
CS 536 — Spring 2016
Programming Assignment 4

CSX Type Checker

Due: Tuesday, April 12, 2016

Not accepted after Tuesday, April 19, 2016

You are to write member functions and classes that implement a type checker for CSX programs.
Your main program will call your CSX parser. If the parse is successful, it will call the type checker.
The CSX source program to be compiled is named on the compiler’s command line or entered
through a GUI. Error messages are written to standard output. An Eclipse archive containing a com-
plete type checker for CSX-lite may be found at the following URL:
http://www.cs.wisc.edu/~fischer/cs536.s16/course/proj4/startup/eclipse/.

The Type Checker
The type checker will be implemented as a visitor class (TypeChecking.java) with member
functions operating on the abstract-syntax tree built by the CSX parser. The type checker should
produce an error message for each scoping and type error in the program represented by the AST,
and should return a boolean value indicating whether the AST had any type or scoping errors.

The scope rules of CSX are similar to those of C++ and Java. A program consists of a single named
class. All members within the class (fields and methods) are static (in the Java sense). Further, all
fields must have distinct names; methods may be overloaded. Local declarations (within a method
or statement block) override any global declaration, but any identifier (other than a label) may be
declared only once in any particular local scope. Parameters of a method are considered local
declarations within that method’s body.

Except for method names, all identifiers, whether class members, or local declarations, must be
declared before they are used. Forward references to methods are allowed (to enable mutual
recursion). Each class must contain a void method named main with no arguments. Execution
will commence with this method.

You must print an error message if a use of an undeclared identifier is found or if an identifier is
illegally redeclared within the same class, method body, or statement block. (The class name is
external to all other scopes; it never conflicts with any other declaration.)

An identifier may denote class name, a label, a field (either a variable or a constant), a method, a
parameter of a method, or a local variable or a local constant. Local variables and constants, fields,
functions (methods that return a value) and parameters may be of type int, bool, or char.
Variables (fields or locals) and parameters may be arrays of int, bool, or char values.

The type and scope rules of the CSX language require the following:

• Arithmetic operators may be applied to int or char values; the result is of type int.

• Only variables (including parameters) of type int or char may be incremented (++
operator) or decremented (-- operator).

2 of 4 	

• Logical operators (&&, ||, and !) may be applied only to bool values; the result is of type
bool.

• Relational operators (==, <, >, !=, <=, >=) may be applied only to a pair of arithmetic values
(int or char) or to a pair of bool values; the result is of type bool.

• Relational operators can be applied to bool values; false is less than true.

• The scope of a field declared in the CSX class comprises all fields and methods that follow it;
forward references to fields not yet declared are not allowed.

• The scope of a method comprises its own body and all methods in the class. Recursive calls
are allowed. Calls to methods not yet declared are allowed.

• The scope of a local variable or constant declared in a method or block comprises all fields
and statements that follow it in the method or block; forward references to locals not yet
declared are not allowed.

• A formal parameter of a method is considered local to the body of the method.

• Except for method names and labels, an identifier may only be declared once within a class,
method or block. However, an identifier already declared outside a method or block may
be redefined locally.

• Method names may be overloaded. All method definitions sharing the same name must return
the same type (possible void) and must differ in the number, type or kind (scalar or array)
of their parameters.

• The type of a constant is the type of the expression that defines the constant’s value.

• The type of a control expression (in an if or while construct) must be bool.

• Int, bool and char values, char arrays and string literals may be printed.

• Only int and char values may be read.

• The types of an assignment statement’s left- and right-hand sides must be identical. Entire
arrays may be assigned if they have the same size and component type. A string literal
may be assigned to a character array if both contain the same number of characters.

• The size of an array parameter is not known at compile-time. Hence all size restrictions
involving the assignment of array parameters are enforced at run-time.

• The types of an actual parameter and its corresponding formal parameter must be identical.

• Arrays are passed as reference parameters. (This is a code generation issue.)

• Assignment to constant identifiers (fields or locals) is illegal. Constant identifiers may not be
incremented or decremented.

• Only identifiers denoting procedures (methods with a void result type) may be called in
statements.

• Only identifiers denoting functions (methods with a non-void result type) may be called in
expressions. The type of a function call is the result type of the function.

• Return statements with an expression may only appear in functions. The expression
returned by a return statement must have the same type as the function within which it
appears.

• Return statements without an expression may only appear in procedures (void result type).

• If necessary, an implicit return statement is assumed at the end of a method.

3 of 4 	

• Expressions (including variables, constants and literals) of type int, char or bool may be
type-cast to an int, char or bool value. Only these type casts are allowed.

• Any identifier may label a while statement; no conflicts are possible (since labels are only
used in break and continue statements). If an identifier labels multiple nested while
statements, the nearest (innermost) definition is used.

• An identifier referenced in a break or continue statement must denote a label (on a
while statement). Moreover, the break or continue statement must appear within the
body of the while statement that is selected by the label.

• A void method of no arguments named main must be declared in the class that constitutes
a CSX program.

• The size of an array (in a declaration) must be greater than zero.

• Only expressions of type int or char may be used to index arrays.

To prevent one type error from causing multiple error messages, you should assume that the result
of an arithmetic operation is always int, and that the result of a logical or relational operation is
always bool, even when an operand is type-incorrect. For example, the following expression
should produce only one error message:

(true + 3) + 4

Use the line and column numbers contained in AST nodes to improve the specificity of your error
messages; try to make them as informative as possible.

How to Proceed
The type checker will need a block-structured symbol table. You may reuse the symbol table
methods and classes you implemented in project 1 or you may use the symbol table implementation
we supply. Walk the AST recursively, executing member functions in class TypeChecking. You
start at the root of the AST (a csxLiteNode or a classNode). When you encounter identifiers
in declarations, you’ll create symbol table entries for them. When you encounter uses of identifiers
you’ll look them up in the symbol table. In this way all uses of an identifier id will access the
declaration corresponding to id, even though that declaration may be far removed from the uses.

The URL http://www.cs.wisc.edu/~fischer/cs536.s16/course/proj4/startup/eclipse/. references an
Eclipse archive containing a complete type checker for CSX-lite, extended to include print
statements. Look over class TypeChecking to see how the methods that implement type checking
are organized. Note that a method corresponding to a particular AST node simply enforces the
scope and type rules that pertain to the construct the AST node represents.

Corresponding to possible root nodes of a CSX-lite or CSX AST (a csxLiteNode or
classNode) class TypeChecking contains two special boolean-valued member functions
named isTypeCorrect(). These functions call their corresponding type checking method,
beginning a recursive walk of the entire AST. After type checking completes, isTypeCorrect
returns a boolean value indicating whether any scoping or type errors have been discovered.

If an AST node has subtrees, those subtrees will usually need to be recursively type checked as part
of type checking a parent node. For nodes that represent constructs that are expected to have a type,
(expressions, identifiers, literals, etc.) it is convenient to add type and kind fields to the node.
(These are defined in the ast class).

Possible values for type include Integer (int), Boolean (bool), Character (char),
Void, Error and Unknown. Void is used to represent objects that have no declared type (e.g.,
a label or procedure). Error is used to represent objects that should have a type, but don’t (because
of type errors). Unknown is used as an initial value, before the type of an object is determined.

4 of 4 	

Possible values for kind include Var (a local variable or field that may be assigned to), Value (a
value that may be read but not changed), Array, ScalarParm (a by-value scalar parameter),
ArrayParm (a by-reference array parameter), Method (a procedure or function), String, and
Label.

Most combinations of type and kind represent something in CSX. Hence type==Boolean and
kind==Value is a bool constant or expression. type==Void and kind==Method is a
procedure (a method that returns no value).

Type checking procedure and function declarations and calls requires some care. When a method is
declared, you should build a list of (type,kind) pairs, one for each declared parameter. When a
call is type checked you should build a second list of (type,kind) pairs for the actual parameters
of the call. You compare the lengths of the list of formal and actual parameters to check that the
correct number of parameters has been passed. You then compare corresponding formal and actual
parameter pairs to check if each individual actual parameter correctly matches its corresponding
formal parameter.

For example, if we had the declaration

p(int a, bool b[]){ ... }

and the call

p(1,false);

we’d create the parameter list (Integer, ScalarParm), (Boolean, ArrayParm) for
p’s declaration and the parameter list (Integer, Value),(Boolean, Value) for p’s call.
Since a Value can’t match an ArrayParm, we can determine that the second parameter in p’s
call is incorrect.

If a method name is overloaded, you must check the parameter list of each definition. Exactly one
definition must correctly match the call being processed.

What to hand in
As was the case for Project 3, your program should expect a text file on the command line (if no
file name is found, a GUI will prompt you to enter one). This file is first parsed, then the result-
ing abstract syntax tree is type checked.
Create a folder (directory) and name it using your first and last name (e.g., CharlesFischer).
Copy into this folder a README file, a build.xml file and all source files necessary to build an
executable version of your program (.java source files, a csx.jlex file and a csx.cup file). Do not
hand in any .class files. Name the class that contains your main P4.java. Upload this handin
folder to the cs 536 project 4 Dropbox folder in learn@uw (https://learnuw.wisc.edu). You may
compress your handin folder into a single file using zip if you wish. Partners should submit only
one solution. The other partner should submit only a README file identifying the partnership.

You may test your type checker using the CSX test programs located in
www.cs.wisc.edu/~fischer/cs536.s16/course/proj4/tests/. These programs are named
test0.csx, test1.csx,.... Hand in the output produced by your type checker in a file
TestResults. We’ll also run your type checker on a variety of our own test programs.

If you wish to claim extra credit, clearly state (in the README file) what you’ve added and
include examples of its operation.

