Simulating Class Objects

Using association lists and private bound values, we can encapsulate data and functions. This gives us the effect of class objects.

\[
\text{(define (point } x y) \\
\text{ (list)} \\
\text{ (list 'rect } \\
\text{ (lambda () (list } x y))) \\
\text{ (list 'polar } \\
\text{ (lambda () } \\
\text{ (list } \\
\text{ (sqrt (+ (* x x) (* y y)))) } \\
\text{ (atan (/ x y))}) \\
\text{)}) \\
\text{)}) \\
\text{ A call (point 1 1) creates an association list of the form } \\
\text{ ((rect funct) (polar funct))}
\]
We can use structure to access components:

\[(\text{define } p \text{ (point 1 1) })\]
\[(\text{(structure 'rect p) }) \Rightarrow (1 1)\]
\[(\text{(structure 'polar p) }) \Rightarrow (\sqrt{2} \frac{\pi}{4})\]
We can add new functionality by just adding new \((\text{id} \ \text{function})\) pairs to the association list.

\[
\text{(define (point x y)}
\begin{array}{l}
\text{(list)} \\
\text{(list 'rect)} \\
\text{(lambda () (list x y)))} \\
\text{(list 'polar)} \\
\text{(lambda () (list (sqrt (+ (* x x) (* y y))) (atan (/ x y)) (list x y))))} \\
\text{(list 'set-rect!)} \\
\text{(lambda (newx newy) (set! x newx) (set! y newy) (list x y)))} \\
\text{(list 'set-polar!)} \\
\text{(lambda (r theta) (set! x (* r (sin theta))) (set! y (* r (cos theta))) (list r theta)))} \\
\end{array}
\)
\]
Now we have

\[(\text{define } p \text{ (point 1 1) })\]
\[(\text{(structure 'rect p)}) \Rightarrow (1 1)\]
\[(\text{(structure 'polar p)}) \Rightarrow (\sqrt{2} \frac{\pi}{4})\]
\[
((\text{structure 'set-polar! p}) 1 \pi/4) \Rightarrow (1 \pi/4)
\]
\[(\text{(structure 'rect p)}) \Rightarrow (\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}})\]
Limiting Access to Internal Structure

We can improve upon our association list approach by returning a single function (similar to a C++ or Java object) rather than an explicit list of (id function) pairs.

The function will take the name of the desired operation as one of its arguments.
First, let’s differentiate between

(define def1
 (let ((I 0))
 (lambda () (set! I (+ I 1)) I))
)

and

(define (def2)
 (let ((I 0))
 (lambda () (set! I (+ I 1)) I))
)

def1 is a function of zero arguments that increments a local variable and returns its updated value.

def2 is a function (of zero arguments) that generates a function of zero arguments (that increments a local variable and returns its updated value). Each call to def2 creates a different function.
Stack Implemented as a Function

(define (stack)
(let ((s ())))
(lambda (op . args) ; var # args
 (cond
 ((equal? op 'push!)
 (set! s (cons (car args) s))
 (car s))
 ((equal? op 'pop!)
 (if (null? s)
 #f
 (let ((top (car s)))
 (set! s (cdr s)
 top))))
 ((equal? op 'empty?)
 (null? s))
 (else #f)
)
)
)
(define stk (stack)); new empty stack
(stk 'push! 1) ⇒ 1 ; s = (1)
(stk 'push! 3) ⇒ 3 ; s = (3 1)
(stk 'push! 'x) ⇒ x ; s = (x 3 1)
(stk 'pop!) ⇒ x ; s = (3 1)
(stk 'empty?) ⇒ #f ; s = (3 1)
(stk 'dump) ⇒ #f ; s = (3 1)
Higher-Order Functions

A higher-order function is a function that takes a function as a parameter or one that returns a function as its result.

A very important (and useful) higher-order function is \texttt{map}, which applies a function to a list of values and produces a list or results:

\begin{verbatim}
(define (map f L)
 (if (null? L)
 ()
 (cons (f (car L))
 (map f (cdr L))))
)
\end{verbatim}

Note: In Scheme's built-in implementation of \texttt{map}, the order of function application is unspecified.
(map sqrt '(1 2 3 4 5)) ⇒
(1 1.414 1.732 2 2.236)

(map (lambda(x) (* x x))
 '(1 2 3 4 5)) ⇒
(1 4 9 16 25)

Map may also be used with multiple argument functions by supplying more than one list of arguments:

(map + '(1 2 3) '(4 5 6)) ⇒
(5 7 9)
The Reduce Function

Another useful higher-order function is reduce, which reduces a list of values to a single value by repeatedly applying a binary function to the list values.

This function takes a binary function, a list of data values, and an identity value for the binary function:

\[
\text{(define (reduce f L id)} \\
\text{ (if (null? L)} \\
\text{ id)} \\
\text{ (f (car L)} \\
\text{ (reduce f (cdr L) id)))} \\
\text{)} \\
\text{(reduce + ' (1 2 3 4 5) 0) ⇒ 15} \\
\text{(reduce * ' (1 2 4 6 8 10) 1) ⇒ 3840}
\]
(reduce append
 '(((1 2 3) (4 5 6) (7 8)) ()))
⇒ (1 2 3 4 5 6 7 8)

(reduce expt '((2 2 2 2) 1) ⇒

\[2^{2^{2^2}} = 65536\]

(reduce expt '(2 2 2 2 2) 1)
⇒ 2^{65536}

(string-length
 (number->string
 (reduce expt '((2 2 2 2) 1)))
⇒ 19729 ; digits in \(2^{65536}\)