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Multilisp is a version of the Lisp dialect Scheme extended with constructs for parallel execution. Like 
Scheme, Multilisp is oriented toward symbolic computation. Unlike some parallel programming 
languages, Multilisp incorporates constructs for causing side effects and for explicitly introducing 
parallelism. The potential complexity of dealing with side effects in a parallel context is mitigated by 
the nature of the parallelism constructs and by support for abstract data types: a recommended 
Multilisp programming style is presented which, if followed, should lead to highly parallel, easily 
understandable programs. 

Multilisp is being implemented on the 32-processor Concert multiprocessor; however, it is ulti- 
mately intended for use on larger multiprocessors. The current implementation, called Concert 
Multilisp, is complete enough to run the Multilisp compiler itself and has been run on Concert 
prototypes including up to eight processors. Concert Multilisp uses novel techniques for task 
scheduling and garbage collection. The task scheduler helps control excessive resource utilization by 
means of an unfair scheduling policy; the garbage collector uses a multiprocessor algorithm based on 
the incremental garbage collector of Baker. 

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream Ar- 
chitectures-multipk-instruction-stream, multiple-data-streamprocessors (MZMD); D.1.3 [Program- 
ming Techniques]: Concurrent Programming; D.3.2 [Programming Languages]: Language Clas- 
sifications--lisp; D.3.3 [Programming Languages]: Language Constructs-concurrent program- 
ming structures; D.4.1 [Operating Systems]: Process Management-multiprocessing/multiprogrum- 
ming; D.4.2 [Operating Systems]: Storage Management-allocation/deallocation strategies 

General Terms: Design, Languages 

Additional Key Words and Phrases: Garbage collection, process scheduling 

1. INTRODUCTION 

Multilisp is an extended version of the programming language Scheme [l]. Like 
Scheme, Multilisp supports and encourages a largely functional style of program- 
ming, but also includes constructs for causing side effects. Like Scheme, Multilisp 
is a pragmatic compromise, whose design recognizes both the many advantages 
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of functional programming and the expressive problems that purely functional 
languages still have in some situati0ns.l 

Unlike Scheme, Multilisp is intended as a vehicle for expressing concurrency 
in programs. Concurrency is expressed using a small set of constructs that have 
been added to Scheme to yield Multilisp. Using these constructs, the programmer 
can explicitly call for concurrency that might not be found by automated analysis 
at compile time or run time. Such analysis is rendered difficult in Multilisp by 
the inclusion of side effects. 

The objects manipulated by Multilisp tasks all exist in one shared name space, 
making it easy for a task to use data structures created by other tasks. This is 
effectively a “shared memory” model and is well suited to a shared memory 
parallel computer, such as the Concert multiprocessor testbed [3] or more 
powerful machines such as the Denelcor HEP-1 [51] or the NYU Ultracomputer 
[21, 22, 481; however, this shared name space can also be implemented in more 
distributed ways, as by the Rediflow [36,37] or “myriaprocessor” [24,25] designs. 

Multilisp’s principal construct for both creating tasks and synchronizing among 
them is the future. The construct ( future X ) immediately returns a future 
for the value of the expression X and concurrently begins evaluating X. When 
the evaluation of X yields a value, that value replaces the future. The future is 
said to be initially undetermined; it becomes determined when its value has been 
computed. An operation (such as addition) that needs to know the value of an 
undetermined future will be suspended until the future becomes determined, but 
many operations, such as assignment and parameter passing, do not need to 
know anything about the values of their operands and may be performed quite 
comfortably on undetermined futures. The use of futures often exposes surpris- 
ingly large amounts of parallelism in a program, as illustrated by a Quicksort 
program given in Figure 1. 

Multilisp inherits from Scheme the ability to use procedures as a rather 
powerful modularity construct. Object-oriented programming using objects with 
hidden state information can be accomplished quite easily using a procedure to 
represent each object. If the hidden state is mutable, the Multilisp programmer 
can build monitor-like [33] structures to synchronize access to it. Multilisp 
provides the necessary low-level tools for this encapsulation and synchronization, 
but no distinctive style or set of higher level abstractions for building mutable 
objects in Multilisp has yet emerged. Experiments to date have focused mainly 
on the basic language design and implementation, and existing Multilisp pro- 
grams make only minor use of side effects. 

Experience has shown that Multilisp can be an effective way to expose 
significant amounts of parallelism in programs of realistic size and that futures 
expose considerably more parallelism than conventional fork/join constructs. 
Along with these results, the Multilisp project has generated interesting algo- 
rithms for task scheduling and parallel garbage collection. This paper is divided 
into three sections: Section 2 discusses goals for parallel programming languages 
and compares some contrasting approaches to parallel programming; Section 3 

1 The reader is referred to [l, ch. 31 for an excellent discussion of the advantages and disadvantages 
of including side effects in a language. 
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)))I) 

(defun qsort (1) (qs 1 nil)) 

(defun qs (1 rest) 
(if (null 1) 

rest 
(Yet ((parts (partition (car 1) (cdr 1)))) 

(qs (left-part parts) 
(future (cons (car 1) (qs (right-part parts) rest) 

(defun partition (elt 1st) 
(if (null 1st) 

(bundle-parts nil nil) 
(let ((cdrparts (future partition elt (cdr 1st))))) 

(if (> elt (car 1st)) 
(bundle-parts (cons (car 1st) 

(future (left-part cdrparts))) 
(future (right-part cdrparts))) 

(bundle-parts (future (left-part cdrparts)) 
(cons (car 1st) 

1 

(future (right-part cdrparts)))))))) 

(defun bundle-parts (x y) (cons x y)) 
(defun left-part (p) (car p)) 
(defun right-part (p) (cdr p)) 

Fig.l. Algorithm 1: Quicksort program using futures. 

describes Multilisp in detail, gives examples of its use, and compares it with some 
other Lisp-based languages for parallel computing; and Section 4 describes 
algorithms used in the Multilisp implementation on the Concert multiprocessor 
[3]. Finally, Section 5 offers some conclusions. 

2. ISSUES IN PARALLEL LANGUAGE DESIGN 

A rough taxonomy of programming languages can be constructed using the 
answers to these questions: 

(1) Does the language explicitly include parallelism in its semantics? 
(2) Does the language include side effects? The answer to this question may 

depend on the precise definition of “side effect,” but most languages fall clearly 
on one side or the other of this distinction. 

(3) Does the language assume a shared memory model? This question is even 
more open to interpretation than the previous one; let us say that a shared 
memory language is one that never requires explicit copying of data in order to 
make it accessible to some part of a program. 

The answers to these questions divide programming languages into four major 
categories: 

(1) Shared memory, side effects, and no explicit parallelism. We may call this 
the “sequential imperative” category. It includes most familiar uniprocessor 
languages, such as Fortran and Lisp [43, 551. 

(2) Shared memory, no side effects, and no explicit parallelism. This category 
of “functional” languages includes SISAL [23, 441, VAL [2], ID [4], Pure Lisp 
[43], SASL [54], and FP [5]. 
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(3) Explicit parallelism, side effects, and no shared memory. This is the 
category of “communicating sequential processes” (CSP) languages, and includes 
Communicating Sequential Processes [32] and various extensions of sequential 
imperative languages for programming nonshared-memory multiprocessor hard- 
ware [49]. 

(4) Explicit parallelism, side effects, and shared memory. These “parallel 
imperative” languages include Concurrent Prolog [50], Ada [34], and Multilisp. 

Algorithms may have opportunities for parallelism at any of several levels of 
granularity, ranging from short sequences of primitive operations to large pro- 
gram modules. These opportunities are multiplicative: if the application of 
medium- or fine-grain parallelism within a module is sufficient to occupy n 
processors, and furthermore n of these modules can be executed in parallel, then 
mn processors will be able to be used efficiently to execute the program as a 
whole unless contention for shared resources imposes a smaller limit. Thus 
opportunities for parallelism should be exploited at all levels if execution on a 
highly parallel machine is desired. 

The inclusion of side effects, shared memory, and explicit parallelism in 
Multilisp is motivated by the following syllogism: 

(1) Side effects add to the expressive power of a programming language. 
Despite many interesting and powerful techniques for programming in side- 
effect-free languages, such as the use of streams [l, 561, functional languages still 
have difficulty efficiently expressing computations, such as database manipula- 
tion and constraint propagation, which are most naturally thought of in terms of 
objects with mutable state information.2 

(2) Without shared memory, it is difficult to exploit parallelism at the medium 
and fine levels of granularity. The explicit copying of shared data from one 
domain to another, even if efficiently supported at the implementation level, is 
bothersome to the programmer and discourages the writing of programs where 
interaction is frequent. This point is elaborated in Section 2.3. 

(3) With side effects, but no explicit parallelism (the “sequential imperative” 
family of languages), coarse-grain parallelism is hard to come by. If parallelism 
is not explicit, then any parallelism that is used must be uncovered by compile- 
time (or possibly run-time) analysis of a program [40]. Side effects make such 
analysis much more difficult, especially on the scale of large program modules. 
(This is not to say that compile-time analysis should not be used, only that it 
should not be relied upon as the sole way to discover parallelism.) 

Thus if Multilisp is to enjoy the extra expressiveness of side effects, it must 
also include explicit parallelism, or forego opportunities for coarse-grain paral- 
lelism. Furthermore, if Multilisp adopts a compartmentalized, CSP-like style 
without shared memory, opportunities for medium- to fine-grain parallelism will 
be missed. The inclusion of side effects, shared memory, and explicit parallelism 
thus helps Multilisp be an expressive language capable of exposing parallelism 
at all levels of granularity. 

’ This point is further discussed in [l, ch. 31. 
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2.1 Software Engineering of Parallel Programs 

Multilisp is an attempt to move the practice of parallel programming beyond the 
areas where it has heretofore enjoyed most of its success, namely, where either 
computations have a very regular structure, or where it is easy to decompose a 
program into virtually autonomous units that can execute using a relatively 
simple (and often low-bandwidth) style of interaction with each other. Tightly 
coupled algorithms of irregular structure have not been easy to program for 
parallel execution. A language model to attack this problem should be (1) 
reasonably independent of parameters of the actual target machine, such as 
topology and number of processing elements; and (2) easy enough to program so 
that it can serve as a basis for a reasonable software engineering discipline. 
Condition (1) is important if software is to be transported from one configuration 
to another, and if software is to have at least the degree of fault tolerance that 
will allow it to run on incomplete configurations (at some expense in execution 
time). 

Condition (2) is vital if software systems of any size are to be developed. 
Existing sequential programming languages with parallelism constructs naively 
grafted onto them can be difficult to program in because the use of the parallelism 
constructs leads to excessively complex programs. Parallelism must be incorpo- 
rated into a programming language in such a way that the cognitive load on the 
programmer remains within acceptable limits. In other words, parallelism must 
be integrated with the main structuring facilities of a programming langauge, 
and these structuring facilities must have the power to help the programmer cope 
with the extra complexity resulting from the introduction of parallelism. The 
future construct in Multilisp, for example, offers a way to introduce parallel- 
ism that fits very nicely with the principal program- operation of Multilisp- 
expression evaluation. Also, no special care is required to use a value generated 
by future. Synchronization between the producer and the users of a future’s 
value is implicit, freeing the programmer’s mind from a possible source of concern. 

Another way a programming language can help programmers cope with this 
extra complexity is by supplying useful modularity constructs and other support 
for structured program organization. Two such forms of support, particularly 
relevant to symbolic programming, are garbage collected heap storage and support 
for data abstractions. Data abstractions are a useful way to represent objects 
with state. Access to state variables within a data abstraction is restricted to 
procedures within the abstraction, which generally leads to more modular and 
understandable programs, especially in parallel programming, where the protocol 
for updating shared state variables is critical to program correctness. 

Garbage collected heap storage allows the dynamic creation and deletion of 
objects, without imposing on the programmer the burden of tracking the use of 
each object so that it may be deallocated at the proper time. This assistance is 
valuable even in sequential programming (witness the widespread use of Lisp), 
but is even more important in parallel programming, where objects may be shared 
among several concurrent tasks and the task that created an object may not be 
the last to use it. Garbage collected heap storage simplifies programs and also 
strengthens modularity by not requiring different users of an object to understand 
the storage management protocol that applies to it. 
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2.2 Numerical Versus Symbolic Computation 

Algorithms differ in the degree to which they emphasize numerical or symbolic 
computation. A favorite language for numerical programming has been Fortran, 
while heavily symbolic programs have more often been written in languages such 
as Lisp [55] or Smalltalk [20]. Each of these languages includes idioms for 
common program structures in its primary application area, such as matrix and 
vector processing (in the numerical case) and manipulation of tree-structured 
data (in the symbolic case). 

Numerical computation emphasizes arithmetic: the principal function of a 
numerical program may be described as delivering numbers to an arithmetic unit 
to calculate a result. Numerical programs generally have a relatively data- 
independent flow of control:3 within broad limits, the same sequence of calcula- 
tions will be performed no matter what the operand values are. Matrices and 
vectors are common data structures in numerical programs, a fact exploited by 
SIMD techniques in such numerically oriented supercomputers as the Cray-1 
[47] and Illiac IV [9]. 

In contrast, symbolic computation emphasizes rearrangement of data. The 
principal function of a symbolic program may be broadly stated as the reorgani- 
zation of a set of data so that the relevant information in it is more useful or 
easier to extract. Examples of primarily symbolic algorithms include sorting, 
compiling, database management, symbolic algebra, expert systems, and other 
artificial intelligence applications. The sequence of operations in symbolic pro- 
grams is often highly data dependent and less amenable to compile-time analysis 
than in the case of numerical computation. Moreover, there does not appear to 
be any simple operation style, comparable to vector operations in numerical 
programs, that can easily, be exploited to increase performance with a SIMD type 
of architecture.4 Accordingly, Multilisp adopts a MIMD approach and does not 
rely on compile-time analysis for extraction of parallelism. 

2.3 Problems with the Communicating Sequential Processes Paradigm 

The principal failings of the CSP paradigm, with its lack of shared memory, are 

(1) It associates each protected domain of data in the program with a single 
sequential thread of execution. 

(2) It leads to a nonuniform style of access to data: one style for accesses local 
to a process, another (message transmission) for accesses between processes. The 
burden of devising and using protocols for nonlocal accesses strongly discourages 
the programmer from carving his program into a large number of processes. This 
psychological disincentive operates whether or not there is any underlying 
difference in efficiency of nonlocal versus local accesses. 

3 This generalization, like most, has many exceptions. Inner loops of numerical programs may contain 
conditionals, and overall control of a program generally includes tests of convergence criteria and 
such. Still, most numerical programs have a relatively predictable control sequence, compared with 
the majority of symbolic programs. 
4 There are some operations, such as procedure calling, pointer following, and even tree search, that 
occur frequently in symbolic programs, but it is not obvious how SIMD parallelism can help very 
efficiently with these. 
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The combination of these two attributes encourages the programmer to create 
a few large processes, rather than a multitude of smaller ones; thus parallelism 
at small levels of granularity is discouraged. Large processes require large proc- 
essors and thus lead inexorably toward systems with relatively small numbers of 
large processors and away from “myriaprocessors”-highly parallel machines 
with relatively small processing elements-that might exploit coming technology 
more effectively. 

The information-hiding properties of processes in the CSP model superficially 
resemble those of data abstractions, but there are two differences. First, a data 
abstraction is not necessarily restricted to only one sequential thread of execution 
at a time, though some data abstractions might be written that way. Second, 
although the state variables of a data abstraction are private and hidden, their 
values may refer to data structures that are shared. The CSP model does not 
facilitate this kind of sharing between processes, forcing the programmer to 
implement the protocols necessary for sharing. 

2.4 Determinacy 

An important philosophical choice facing the designer of a language for parallel 
programming is whether or not to design the language so that all programs are 
guaranteed to be determinate (i.e., to produce the same output whenever applied 
to the same input). Determinacy is a property of ordinary sequential programming 
languages and is a powerful aid in debugging and validating programs. Indeed, it 
has been observed that programmer productivity decreases by a factor of three 
when working on operating system kernel code, a common context where non- 
determinacy is encountered [lo]. Unfortunately, the combination of side effects 
and explicit parallelism makes it easy to write nondeterminate programs. 

In many applications, such as operating systems and databases, the response 
to one source of input may depend on inputs previously received from other 
sources. For example, an airline reservation system may respond differently to a 
query depending on whether or not a reservation was previously made from some 
other port. Such a system must impose some arbitrary time ordering on inputs 
that are not ordered by any causality relation in the system and is inherently 
nondeterminate. It is often argued, therefore, that no language that allows only 
determinate programs to be expressed can be powerful enough for a wide range 
of applications. This argument has led to the proposal of mechanisms such as 
the nondeterminate merge of two streams [17] to be appended to determinate 
languages, allowing nondeterminate programs to be built mostly out of determi- 
nate modules. In contrast, Multilisp can be viewed as a determinate language- 
Pure Lisp-plus a side effect mechanism. Debugging and validation of programs 
may be easier using streams, but there is extremely little evidence one way or the 
other. 

Even for writing programs that are supposed to be determinate, the language 
restrictions required to guarantee determinacy limit the programmer’s flexibility 
to specify certain resource use policies, such as the choice between updating a 
data structure in place and allocating a new area for an updated copy. A clever 
compiler or run-time system must then be relied upon to make reasonable 
resource allocation decisions. This is not too difficult in some cases, as when 

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 4, October 1985. 



508 l Robert H. Halstead, Jr. 

reference counts can be used to determine that a structure to be copied is about 
to be thrown away and therefore can instead be safely updated in place, but other 
situations are more complicated. Because nondeterminate languages such as 
Multilisp allow the programmer more flexibility, they must be used wisely, but 
they avoid relying on yet-to-be-developed compiler technology for efficient im- 
plementation. 

2.5 Styles of introducing Parallelism 

The ways of introducing parallelism into the execution of an algorithm may be 
grouped into two categories. The more conservative way is to keep precisely the 
same set of operations, but (with the aid of suitable programming language 
constructs) relax the precedence constraints among operations, allowing some of 
them to be performed in parallel. The more aggressive way is to initiate additional 
computations, in “eager-beaver” fashion, on speculation that their values will 
prove useful. This speculative style would often be used in search problems, 
where many paths may be explored in parallel, but the finding of one solution 
renders all other explorations irrelevant. 

These two approaches require very different kinds of support. In the first, 
more conservative, case, the scheduling of operations is a performance issue, not 
a semantic one: the same (presumably finite) set of operations will be performed, 
no matter what order is selected (ignoring interactions between tasks due to side 
effects). Thus questions of fairness in scheduling or resource allocation are not 
central to the correctness of programs. They are only matters of efficiency and 
can be left to a suitably clever run-time system. 

The speculative approach, by contrast, involves the programmer more directly 
in scheduling and resource allocation. If expensive or even potentially nonter- 
minating computations are started, in eager-beaver style, on speculation that 
their results may prove relevant, then the programmer will want to control the 
amount of system resources dedicated to their execution, so that the most 
important tasks are not neglected in favor of others. The programmer will possibly 
even want to suspend or terminate tasks because of information generated 
elsewhere in the execution of the program. 

Some confusion has been generated in the design of languages for parallel 
computing by the failure to distinguish between these two sources of parallelism 
and appreciate their different requirements. For example, fairness of scheduling 
is necessary only when dealing with speculative parallelism: a language that does 
not promise fair scheduling in other cases may be able to be implemented more 
efficiently (this issue is discussed further in Section 4.3). To make the best use 
of parallel hardware, both approaches to parallelism should be available, but 
Multilisp currently supports the introduction of parallelism primarily by means 
of the first, more conservative, approach. The requirements of the second ap- 
proach are more varied and less clear and will be further explored in the future. 

3. MULTILISP 

Multilisp is a member of the Scheme [l] family of Lisp dialects. Like all Lisp 
dialects, Multilisp allocates storage out of a garbage collected heap. In addition, 
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Multilisp shares with Scheme three properties that distinguish them from the 
more common Lisp dialects: 

(1) Exclusive reliance on lexical scoping. Lexical scoping (resolution of free 
variable references in the environment where the referencing procedure was 
created) decouples the choice of variable names in a procedure P from the choice 
of free variable names in other procedures that call or are called by P and thus 
promotes modularity more effectively than the traditional Lisp discipline of 
dynamic scoping (resolution of free variable references in the environment of the 
calling procedure). Furthermore, the usual optimized implementation of dynamic 
scoping by “shallow binding” [X5] does not adapt gracefully to a multitask 
environment where various tasks running in the same address space may have 
different values for the same variable. Implementation of lexical binding by 
means of a static chain of environments continues to work well. 

(2) “First-class citizenship” for procedure values. Procedures in Scheme and 
Multilisp may be freely passed as arguments, returned as values of other proce- 
dures, stored in data structures, and treated like any other kind of value. Correct 
implementation of this, in combination with lexical scoping, requires the use of 
garbage-collected heap storage for procedure environments. Once this expense is 
incurred, however, procedure values can be used as data abstractions. The 
nonlocal variables of a procedure, found in the lexically enclosing environment, 
can be considered as the underlying state variables of a data abstraction imple- 
mented by the procedure. Operations on this data abstraction can be performed 
by calls to the procedure. As with other implementations of abstract data types, 
the underlying state variables can be protected from access except through the 
channels provided by the abstraction [ 11. 

(3) “Tail recursion.” Multilisp, like Scheme, is tail recursive. This means that 
if a function f calls a function g in such a way that the value returned by g is also 
returned by f, with no further work required by f upon the return from g, then 
the call to g followed by the return from f are collapsed into effectively a jump to 
g. The return from g then returns directly to the caller of f. Tail recursion is 
analogous to the familiar machine-language optimization of converting a subrou- 
tine call immediately followed by a subroutine return into simply a jump instruc- 
tion. This tactic saves a small amount of execution time by eliminating some 
subroutine return processing, but more importantly, it avoids unnecessary 
buildup of saved data on the stack, allowing a recursive subroutine that calls 
itself in a tail-recursive manner to be used in place of an iterative looping 
construct, without accumulating stack frames. Thus in Multilisp (as in Scheme) 
there is no need for a separate built-in looping construct. Instead, a recursive 
procedure, free of side effects and hence more amenable to parallel processing, 
can be used as a loop [l, 521. 

3.1 The Multilisp Approach to Parallelism 

Multilisp includes the usual Lisp side-effect-producing primitives for altering 
data structures and changing the values of variables. Therefore, control sequenc- 
ing beyond that imposed by data dependencies may be required in order to assure 
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determinate execution. In this respect, Multilisp parts company with some 
concurrent Lisp languages [ll, 17, 361, which include only a side-effect-free 
subset of Lisp. 

Although it does include side effects, Lisp is superior to most other common 
programming languges in that it includes a side-effect-free subset with substantial 
expressive power. This subset is part of Multilisp; thus it is possible to write 
significant bodies of Multilisp code in a completely side-effect-free way. Further- 
more, where side effects are used, as in maintaining a changing database, they 
can be encapsulated within a data abstraction that synchronizes concurrent 
operations on the data. The data abstraction can ensure that the data are only 
accessed according to the proper protocol. 

Multilisp thus supports a programming style in which most code is written 
without side effects, and data abstractions are used to encapsulate data on which 
side effects may be performed, to present a reasonable interface to the exterior. 
The programmer’s aim in using this style should be to produce a program whose 
side effects are compartmentalized carefully enough that any module may safely 
be invoked in parallel with any other. If this style is followed, the difficulties 
caused by the presence of side effects will be isolated to small regions of the 
program and should therefore be reduced to manageable proportions. 

Nevertheless, the inclusion of side effects in Multilisp requires constructs by 
which the sequence of execution can be controlled explicitly. A goal of the 
Multilisp design has been to identify the natural structures of Lisp programs and 
capitalize on them by introducing variants that perform similar functions but 
give rise to opportunities for parallelism. The intent is to minimize the extra 
cognitive load on the programmer that results from the introduction of parallelism 
by making the parallelism “flow” in the same direction as the rest of the language. 

The default in Multilisp is sequential execution. This allows Lisp programs or 
subprograms written without attention to parallelism to run, albeit without using 
the potential concurrency of the target machine. To introduce parallelism, a 
programmer may use the constructs described below. 

3.1.1 PCALL. A simple mechanism for introducing parallelism into a Multil- 
isp program is the peal 1 construct. A Multilisp expression such as 

(pcallFABC...) 

is equivalent to the procedure call 

0) 

(FABC...) (2) 

except that case (1) will result in concurrent evaluation of the expressions F, A, 
B, C, . . . , whereas in case (2) the same expressions will be evaluated one after 
the other. More precisely, expression (1) results in concurrent evaluation of the 
expressions F, A, B, C, . . . to their values f, a, b, c, . . . , after which the value f 
(presumably a procedure) is applied to the argument values a, b, c, . . . . pcall 
thus embodies an implicit fork-join followed by a procedure call. Since procedure 
calls are a common construct in Lisp and Multilisp, pcall is useful in many 
situations. Even though the degree of parallelism created by any one pcall is 
limited by the number of arguments in that peal 1 expression, use of peal 1 
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within a recursive procedure such as a tree walk can result in exponential amounts 
of parallelism.5 

The cognitive load imposed by pcall is low because it is closely integrated 
with the procedure-calling mechanism of Multilisp. Nevertheless, the program- 
mer is left with the responsibility of determining whether the use of pea 11 in 
each instance is safe. In thoughtlessly written programs, this burden would often 
be severe; however, if the programmer adheres to the programming style recom- 
mended in Section 3.1, writing mostly side-effect-free code and encapsulating all 
side effects within suitable data abstractions, this load can be considerably 
reduced. In our experience thus far with programs of moderate size, we have 
found this approach to be quite tractable. 

3.1.2 Futures. peal 1 allows concurrency between the evaluation of two or 
more expressions that are arguments to a function. Often an additional form of 
concurrency is desirable: concurrency between the computation of a value and 
the disposition or use of that value. For example, the expression 

(pcall consA B) (3) 

will concurrently evaluate A and B, and then use the Lisp primitive cons to 
build a con-scell, a data structure containing the two values. The actual values of 
A and B are not really needed when the data structure is built. Only tokens, or 
place-holders, for the eventual values of A and B are really needed. These are 
effectively “futures contracts” or “promises to deliver” the values of A and B 
when needed [6].6 If the data structure built using these tokens is not accessed 
immediately, substantial concurrency may be possible between the evaluations 
of A and B and operations that follow construction of the data structure. 

This concurrency can be captured using the future construct introduced in 
Section 1 by rewriting expression (3) above as 

(cons(futureA)(future B)): (4) 

Note that this has more potential for parallelism than the similar expression 

(+(futureA) (future B)) (5) 

because the + operator will immediately need to examine its argument values (so 
it can add them). Hence expression (5) yields essentially the same parallelism as 

(pcall+AB). 

pc a 11 can be implemented in terms of futures. For example, ( pea 11 F A B ) 
can be implemented by creating futures for the values of F, A, and B, and then 

‘The notion of parallel evaluation of arguments to function calls in Lisp is hardly new, but the 
author does not know of any instances of its use on any serious scale on an actual parallel machine. 
6 These “futures” greatly resemble the “eventual values” of Hibbard’s Algol 68 [39]. The principal 
difference is that eventual values are declared as a separate data type, distinct from the type of the 
value they take on, whereas futures cannot be distinguished from the type of the value they take on. 
This difference reflects the contrast between Algol’s philosophy of type checking at compile time and 
the Lisp philosophy of run-time tagging of data. 
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“touching” all three to force their evaluation to be complete before F is called.’ 
Thus future is a more fundamental construct than pcall. pcall is included 
along with future in Multilisp because there may well be situations in which a 
programmer feels confident that two expressions A and B can safely be evaluated 
in parallel with each other, but is less sure of the safety of evaluating A 
concurrently with arbitrary subsequent processing of the program. pcall is a 
more conservative approach to introducing parallelism, although it should be 
possible to use future with confidence if the programming style recommended 
in Section 3.1 is followed. 

3.1.3 Example of the Use of Futures. Algorithm 1, shown in Figure 1, offers a 
more substantial example of the use of futures. The procedure qs sorts a list 1 
of numbers using the Quicksort algorithm: the procedure partition uses the 
first element e 1 t of 1 to divide the rest of 1 into two lists, one containing only 
elements less than el t, and the other containing only elements greater than or 
equal to el t. Each of these lists is recursively sorted using qs, and the results, 
along with the partitioning element el t, are appended in the proper order to 
form the result. To avoid the overhead of an explicit append operation, qs takes 
an additional argument rest, which is the list that should appear after the list 
of sorted elements of 1. The top-level procedure q s o r t accordingly supplies n i 1 
as the initial value for rest .8 

Algorithm 1 is free of side effects and was obtained from a side-effect-free 
sequential program simply by enclosing certain expressions inside a future 
operator. Where to put the future operators is not immediately obvious. Every 
use of future in Algorithm 1 gains a significant amount of parallelism. The one 
use of f u t u r e in the procedure q s allows the sorting of the left and right sublists 
returned by partition to occur in parallel. Note that pea 11 could not easily 
be used in this case because the result of one of the sorts is an argument to the 
other sort. On the other hand, future works well because this argument will 
not be touched inside the sort-it will simply be built in at the end of the sorted 
list. 

The uses of future in partition are more interesting, and distinguish this 
Quicksort program from those that have been studied on other parallel processing 
systems [13, 451. partition is designed to get some results back to its caller 

7 The current Multilisp implementation of pcall uses this strategy. The “touching” can be done 
using the primitive touch, which acts as a strict identity operator whose execution will be suspended 
if its argument is an undetermined future. 
s Algorithm 1 uses a number of common Lisp operators: ( car X ) returns the first element of the 
conscell X, thus ( car (cons A B ) ) always gives the value of A. (cdr X) returns the second 
element of the conscell X. (null X) returns true if X evaluates to the value nil, else (null X) 
returns n i 1. ( de f un F ( bul ) 6ody ) defines a function named F, with formal parameters bul and 
the designated body. ( if A B C ) returns the value of B if the value of A is not ni 1; else it returns 
the value of C. (let ( (uarl UC&) (uarz u&) . . ) body ) evaluates body in an environment 
where each var; has been bound to the value of the corresponding expression ooli (free variables in 
the 1 et - expression are evaluated in the surrounding environment). 

The input and output of Algorithm 1 are represented as lists. A list is a seqence of elements 
represented as a chain of conscells such that the car of the list contains the first element of the list, 
and the cdr is a list of the remaining elements. The empty list, that is, the list with no elements, is 
represented by n i 1. 

ACM Transactions on Programming Languages and Systems, Vol. 7, No. 4, October 1985. 



Multilisp: A Language for Concurrent Symbolic Computation l 513 

as soon as possible, even while the partitioning is still continuing. Therefore, the 
recursive call to partition the cdr of the argument Is t is enclosed within a 
future; otherwise, no value could be returned from partition until the 
recursive calls to partition had gone all the way to the end of 1 s t and then 
returned. 

The remaining uses of future in partition are needed to avoid throwing 
away the parallelism purchased with this first use. partition returns a “bun- 
dle” (represented as a conscell) containing the two sublists it produces. It builds 
this bundle using cd rpa r t s, a future for the bundle obtained by recursively 
partitioning the cdr of the argument 1 s t. The first element of 1 s t is then 
consed onto the correct sublist of cdrpar t s, depending on whether this first 
element is greater than the discriminant element e 1 t. However, since cd rpa r t s 
starts its life as a future, even the simple operation. of trying to select one of its 
component sublists may block, delaying the return from partition, largely 
negating the parallelism obtained by placing the recursive call to partition 
within a future. This problem is solved by also placing all expressions selecting 
the right or left sublists of cdrparts within futures. Thus partition can 
create and return a result bundle logically containing sublists that have not been 
fully (or even partially) computed yet. 

Since partition can return a bundle of two sublists before the partitioning 
of its argument has completed, the sorting of the sublists can begin before the 
production of the sublists has ended. This sorting will, in general, involve further 
partitioning, followed by further sorting, etc. The net result is that a large amount 
of concurrent activity, at many levels of recursion, quickly comes into being. This 
contrasts with other parallel implementations of Quicksort, where the partition- 
ing is a sequential process, and sorting of the sublists cannot begin until the 
partitioning has finished. Performance figures for Algorithm 1, which appear in 
Section 4.5, demonstrate the added parallelism of this program. In fairness, it 
should also be noted that this program, ,which copies its argument list during 
partitioning, is subtly different from the usual Quicksort program, which updates 
the list of argument values in place. Thus Algorithm 1 may incur some extra 
overhead in order to make extra parallelism available. Nevertheless, its structure 
shows some of the new ways in which futures can help expose parallelism. 

An alternative to the explicit use of futures, in a side-effect-free dialect of Lisp, 
would be to simply cause every expression to return a future. This would ensure 
the availability of the maximum amount of parallelism, but at the cost of 
significant execution time overhead. Perhaps a compiler can do a good job of 
locating the most desirable places to put future operators in side-effect-free 
procedures; this idea is currently under investigation. 

3.1.4 Futures Versus Lazy Evaluation. Futures are related to the concept of 
“lazy,” or demand-driven, evaluation [18, 301. Like lazy evaluation, futures can 
be used to compute nonstrict functions-functions that terminate despite the 
possible nontermination of the computation of one or more argument values. 
Such nonstrict functions are useful for creating and manipulating infinite, or 
merely large, objects such as the list of all the integers, the list of all the prime 
numbers, or the list of all leaf nodes of a tree, without having to calculate them 
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fully in advance. Any finite computation using these objects would only examine 
a finite portion of them; by using lazy evaluation, it is possible to compute only 
those portions of an object that are needed to determine a desired result. 

Futures allow a computation to proceed past the calculation of a value without 
waiting for that calculation to complete, and if the value is never used subse- 
quently, the computation will never pause to wait for the calculation of the value 
to finish. Thus futures can be used to compute nonstrict functions, but the cost 
is high. Implicit in the concept of a Multilisp future is the devotion of some 
computational resources to evaluating the expression within the future, even 
before it is certain that the value of the future will ever be used. In this respect, 
Multilisp futures resemble eager-beaver evaluation [6, 71. However, unlike many 
formulations of eager-beaver evaluation, Multilisp makes no provision for halting 
the evaluation of a future when it becomes clear that the associated value will 
never be used. Such a provision complicates the garbage collection mechanism 
of a language [7] and is not necessary for the intended use of futures in Multilisp, 
which (as discussed in Section 2.5) is for calculations that terminate and whose 
values the programmer is quite sure will be used. 

In the case of a computation whose value might not be required, the program- 
mer might desire to return a place-holder, like a future, for the value, but delay 
committing resources to the computation until the value is required (if this 
ever occurs). Multilisp provides for this by means of the delay primitive. 
(delay X) is identical to (future X), except that in the case of (delay X) 
the evaluation of X will not begin until some other computation requires its 
value. Thus the Multilisp function in t s - from, defined below, returns the list 
of all integers greater than or equal to the argument n, in ascending order, but 
only computes the integers as they are needed by other computations. 

(defun ints-from (n) 
(cons n 

(delay (ints-from (+ n 1))))) 

The semantics of in t s - from would remain unchanged, in a theoretical sense, 
if the delay were replaced by a future. However, the version using future 
would spawn a nonterminating computation that would compete with other 
running processes. This computation would not only use up processing cycles 
that might be more usefully applied elsewhere, but, in our practical world of 
limited resources, would also fill up storage with list elements that might never 
be accessed. 

There is really a large, multidimensional space of delayed evaluation constructs, 
in which future and de lay are only two particular points. The major issues 
that distinguish points in this space are 

(1) Resource allocation. How and when are computational and storage resources 
devoted to a computation? 

(2) Evaluation order. What precedence constraints, if any, are enforced? 

In a side-effect-free program, issue (2) is not a concern, since all evaluation 
orders that respect the explicit data dependencies of the program will produce 
the same result. In a hypothetical computer with infinite resources, issue (1) is 
not a concern, but when resources are finite, delay is a semantic extension of 
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the language, since it permits the representation of infinite objects while gmr- 
anteeing that the storage used in representing an object is proportional to the 
size of the portion of the object that is actually explored. Thus all uses of future 
in a program could be removed with no effect on the ultimate resource use of the 
program, but removing uses of delay might cause unbounded resource usage 
(and hence nontermination) by a program whose resource usage was previously 
finite. 

The programmer might specify de lay, rather than future, just to indicate 
that the value of an expression may not be used, and therefore that machine 
resources should not be devoted to it until its value is needed. However, de lay 
can also be used to indicate that interactions between the delayed expression and 
the rest of the program require semantically that the delayed expression not be 
evaluated until a later time, as in an expression of the form 

(setq recursively-defined-stream 
(cons 1 (delay (f recursively-defined-stream)))) 

where the delay construct is essential. If it were left out, recursively- 
de f i ned - s t r earn would consist of a 1 consed onto the result of applying f to 
whateverlistwaspreviouslyboundto recursively-defined-stream.This 
style of definition may displease some programming disciplinarians, and it 
certainly is easy to make mistakes when using it; nevertheless, it has some 
expressive power [l] and is a case where the distinction between delay and 
future makes a profound semantic difference. 

3.2 Automatic Versus Manual Resource Allocation 

An important property of a programming langauge is the visibility of the target 
machine in the source language. If the target architecture is visible, the program- 
mer may have the opportunity to choose a style of expression that is especially 
efficient for the target machine. Otherwise, the compiler and/or run-time system 
must be relied upon to perform such optimization, if necessary. The latter 
approach is clearly the more desirable, all other things being equal, since it leads 
to more machine-independent programs, but it requires the existence of reason- 
ably good optimization algorithms for the target machine. 

Parallel architectures have several new opportunities for optimization, in task 
scheduling and data placement, beyond those found in single-sequence architec- 
tures. We do not yet understand how to exploit these new opportunities well. 
Ideally, a language for programming parallel machines would be machine inde- 
pendent in the same sense as our best contemporary sequential langauges, but at 
the current state of the art it may not be feasible to completely hide the gross 
structure of the target machine. Scheduling and data placement can have a 
dramatic impact on the efficiency of execution of a parallel algorithm, and our 
insight into how to resolve these problems in the general case is still weak. 

In Multilisp, data placement is handled automatically. Scheduling is specified 
in part by the programmer, who uses peal 1 and future to indicate task 
boundaries, and in part by the run-time system, which decides when and where 
to execute tasks. The goal of machine independence is compromised slightly, 
since the programmer is required to specify the granularity of tasks, a decision 
that presumably reflects the cost of task creation and the number of parallel 
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processors in the target machine. Nevertheless, this is a much smaller degree of 
machine dependence than if the programmer were required, for example, to 
explicitly assign tasks to physical processors. 

The automatic mechanisms for data placement and task scheduling work well 
enough that they do not cause any serious bottlenecks in the current Multilisp 
implementation, but may not work as well in future implementations where 
processor speed comes closer to challenging the bandwidth of the memory and 
communications systems. Thus it may eventually be necessary to give the 
programmer more control over these decisions, even at the price of increasing 
the machine dependence of Multilisp. 

3.3 Other Multiprocessor Lisp Designs 

Many researchers have been interested in using parallelism together with Lisp 
[ll, 17, 19, 42, 531. Of these projects, the one most similar to Multilisp in its 
goals and mechanism is the QLAMBDA language of Gabriel and McCarthy 
[19]. The QLET operator in this language can be used to duplicate the function 
of peal 1. QLET also provides a capability similar to futures, by allowing the 
evaluation of an expression E to begin in parallel with the computation of some 
data that will eventually be used by E. This may be thought of as the “downward” 
capability of futures, in which an operand passed “down” to some computation 
C need not be fully calculated before C begins. However, Multilisp futures can 
also be used in an “upward” sense, allowing a computation C to return control to 
its caller even before the value returned by C is fully determined. The QLAMBDA 
langauge also offers this capability, but it is subject to some curious interactions 
with the CATCH and QCATCH operators of QLAMBDA. Exiting a CATCH 
causes all tasks created within its body to be killed, exiting a QCATCH via a 
THROW also has this result. This makes the upward use of futures somewhat 
hazardous. For example, the Quicksort program of Algorithm 1 may return a 
value containing not yet determined futures. If such a value were returned through 
a CATCH, the tasks calculating the values of those futures would be killed and 
the sort would never finish. Thus the QLAMBDA programmer needs to be careful 
with values that may contain futures, and not return such values through a 
CATCH until they are fully computed. This violates a principle of abstraction 
stating that the same operations should be legal on a value whether or not it was 
produced using futures. 

On the other hand, QLAMBDA addresses a number of issues not yet confronted 
by Multilisp. By means of its QLAMBDA construct, the QLAMBDA langauge 
offers a synchronization construct similar to monitors [33]. Similar capabilities 
can be built in Multilisp (e.g., using closures and semaphores), but Multilisp does 
not currently offer all these capabilities packaged in a single construct. Also, the 
CATCH operator, despite the complaints discussed above, does provide some 
control over the execution of tasks, by making it possible for one process to kill 
another. Multilisp does not currently include a comparable facility. 

C-LISP [53] is an extension of LISP 1.5 that allows explicit spawning of 
processes to evaluate designated forms. Concurrently executing processes may 
communicate with each other by means of shared variables. Primitives are 
provided for mutual exclusion, checking whether a process has terminated, and 
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retrieving the value computed by a terminated process. These capabilities are all 
available in Multilisp. In particular, the processes of C-LISP can be emulated 
using futures; however, a C-LISP program must take explicit steps to retrieve a 
value produced by a process, whereas a Multilisp future can be used without 
knowledge that it is a future rather than an ordinary datum. This transparency 
simplifies programs and decouples the scheduling strategies used in producing 
objects from the protocols used in accessing them. 

Friedman and Wise [17] describe a side-effect-free dialect of Lisp featuring a 
nonstrict cons operator whose operands are always evaluated as futures, allowing 
every call to cons to return quickly. Their langauge also features a nondeter- 
ministic constructor function f rons that allows, among many other things, 
parallel execution of multiple algorithms for computing a desired result, where 
only the first result yielded by any of the algorithms is wanted. f rons can also 
be used to effect the nondeterministic merge of two streams of values. Since side 
effects are not allowed in this dialect, partially completed computations whose 
values are not used can be quietly abandoned without the concern for clean 
termination that would arise in Multilisp or QLAMBDA. 

Paralisp [ll] is a side-effect-free langauge offering four evaluation modes- 
standard, parallel, eager, and lazy-which correspond roughly to sequential 
evaluation, pcall, future, and delay in Multilisp. However, in Paralisp, the 
evaluation mode is inherited by default from the dynamically containing expres- 
sion, rather than being specified explicitly for each departure from sequential 
evaluation. 

The Bath Concurrent Lisp Machine [42] relies on compile-time analysis to 
reveal the parallelism to be exploited during execution. There are no primitives 
by which the user may explicitly call for parallel execution; nevertheless, useful 
amounts of parallelism are found after interprocedural data flow analysis. This 
kind of analysis could also be applied to Multilisp programs of the sort studied 
in [42], with comparable results, but certain programming styles, notably data- 
directed programming and the use of functions as first-class data objects, present 
difficult problems for compile-time analysis, even where a programmer may see 
numerous opportunities for parallelism. A language with explicit constructs for 
introducing parallelism allows these opportunities to be exploited also. 

4. IMPLEMENTATION OF MULTILISP 

Multilisp is implemented on Concert [3], an experimental multiprocessor under 
construction in the author’s laboratory. The goals of this implementation, called 
Concert M&lisp, are (1) to gain experience with the implementation algorithms 
described below and (2) to provide a genuinely parallel machine running Multi- 
lisp, for use in developing and measuring substantial applications. Activity (2) is 
very important to us. The design of future multiprocessors must be based on 
analysis of a representative body of software that might be expected to run on 
them. For a language as different from mainstream languages as Multilisp, this 
software does not exist. Therefore, we need a system on which we can develop 
software in Multilisp. Furthermore, we expect the development of this software 
to give us valuable feedback (as it already has) on the usefulness of the various 
Multilisp constructs. 
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An obvious alternative to implementation on a real multiprocessor is imple- 
mentation via simulation. Indeed, this approach was used for various precursors 
of Multilisp [24, 251, but a danger lurks in the limited speed of simulated 
execution, which is often two or three orders of magnitude slower than that of 
an actual implementation. The programs for which we might like to use multi- 
processors are time consuming; otherwise a single processor would suffice. A slow 
simulator discourages work on long programs in favor of short, small, “toy” 
programs. Short programs are often qualitatively different from long programs; 
they present different software engineering difficulties, different levels of oppor- 
tunity for parallelism, and different patterns of access to data. It is therefore 
vital to have an experimental system powerful enough to allow work with 
substantial programs. 

The Concert multiprocessor, when fully built, will comprise 32 MC68000 
processors and a total of about 20 megabytes of memory. It can be described 
most concisely as a shared-memory multiprocessor, but the organization of 
Concert includes various local paths from processors to nearby memory modules, 
so Concert provides a higher overall bandwidth between processors and memory 
if most memory accesses are local. 

As of this writing, the largest part of Concert on which it has been possible to 
test Multilisp is an &processor section of the eventual Concert machine. This 
machine consists of 8 processors, each connected to 1 port of a dual-ported 
memory. Each processor, and the remaining port of each memory, is connected 
to a shared Multibus [35]. Thus every processor can access any memory module 
in the system, but each processor has 1 tightly coupled (or local) memory module 
that it can access without using the Multibus. A 16-bit access by a processor to 
its local memory takes 500 nanoseconds; a 16-bit access using the Multibus takes 
about 1 microsecond, in the absence of contention for the Multibus. Performance 
of Concert Multilisp on this machine, given sufficient parallelism in the Multilisp 
program being executed, is essentially 8 times as fast as performance on a single 
processor; hence Concert Multilisp has no built-in bottlenecks that prevent full 
use of all eight processors. This is not an especially demanding performance test, 
but does give a certain empirical validation to the algorithms used.’ 

4.1 MCODE 

A program to be executed by Concert Multilisp is first compiled into a machine- 
level language called MCODE. In the best recursive tradition, the compiler is 
itself written in Multilisp. MCODE is interpreted by a program written in the 
programming language C [38]. One copy of this 3000-line program is located in 
the local memory of, and executed by, each processor in the Concert machine. 
Each processor manipulates various per-processor data structures, such as top- 
of-stack caches, also located in the processor’s local memory. Shared data 
structures (including MCODE programs) reside in a garbage collected heap that 
is distributed among the memory modules of Concert (the garbage collection 

’ Multilisp has also been implemented on a 12%processor Butterfly machine [8,46]. It has exhibited 
speedups beyond those possible on the eight-processor Concert machine, but, due to various differ- 
ences between Concert and the Butterfly, it needs further tuning. Therefore, it is not further discussed 
here. 
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algorithm is discussed in Section 4.4). Thus each processor makes mainly local 
accesses, punctuated by an occasional access to the shared heap for the next 
MCODE instruction or some other Multilisp object. When Multilisp is running 
on 8 processors, these heap accesses consume about 30 percent of the capacity of 
the shared Multibus. A large fraction of these accesses are to read-only objects 
such as code. Therefore, the number of global accesses can probably be reduced 
significantly through caching strategies. Such a reduction would be significant 
on a system with a lower ratio of communication bandwidth to processing speed 
than Concert, however, the exact magnitude of the savings obtainable through 
caching is not known at this time. 

At the MCODE level, a program in execution may be viewed as a collection of 
tasks sharing pointers into a common garbage collected heap. The state of each 
task can be characterized by means of three pointers into the heap: the program 
pointer, the stack pointer, and the environment pointer. MCODE is a stack- 
oriented language: most. operators obtain their operands by popping them off the 
current. task’s stack and push their results back onto the stack. Each task’s stack 
is conceptually allocated in the heap, although for efficiency reasons the top 
several elements of each active task’s stack are cached in the local memory of 
the processor executing that task. Nevertheless, a task’s stack can be dumped 
completely into the heap when the task is suspended or transferred from one 
processor to another. This capability also makes possible the construction of full 
continuations [29] that could be used for the Lisp catch/ throw constructs, 
but the interaction of full continuations with futures is troublesome. This issue 
is explored in [28], where an alternative way to implement catch and throw is 
given. 

Tasks are created using the MCODE FUTURE instruction, which specifies 
the program pointer for the newly created task. The environment pointer is 
inherited from the parent task, leading to cactus-like environment structures in 
which variables may be shared between tasks. The stack of a new task always 
has just a single item on it-a reference to the future whose value the task has 
been created to compute. 

Each datum manipulated by an MCODE instruction is a tagged datum with 
two principal fields: a type field and a value field.” We refer to such a tagged 
datum as a Lisp value. The type field indicates the type of the Lisp value. Many 
MCODE operators (e.g., addition) require their operands to have certain types. 

There are two broad categories of types: 

(1) Pointer types. The value field of a pointer-type Lisp value contains the 
address of the location in the heap of the sequence of Lisp values that 
compose the contents of the original Lisp value.” 

“‘There are also a couple of auxiliary bits in each tagged datum. These are used by the garbage 
collector discussed in Section 4.4.2 and for implementing the synchronization operations discussed 
in Section 4.2; however, the existence of these bits is not explicitly visible in the semantics of 
MCODE. 
I1 Concert Multilisp also includes a category of pointer types whose value field is interpreted as the 
address of a sequence of data that are not represented in the tagged-datum format. Character strings, 
for example, are members of this category. 
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(2) Nonpointer types. The value field of a nonpointer-type Lisp value is inter- 
preted as a bit string in some suitable way. Integers are an example of a 
nonpointer type. 

This “typed-pointer” style is fairly common among Lisp implementations. 
The remainder of this paper details several of the implementation techniques 

that have been developed for Multilisp. They cover such areas as synchronization, 
task management, and garbage collection of a heap shared by many processors. 
These techniques have been sufficient to produce a working multiprocessor, 
implementation of Multilisp powerful enough to run programs such as the 
Multilisp compiler itself. 

4.2 Synchronization 

The Multilisp programmer may wish to express synchronization requirements of 
two different types: precedence constraints and mutual exclusion constraints. 
Precedence constraints typically arise out of fork/join or producer/consumer 
situations, and may be enforced using the pc a 11 and future mechanisms. The 
need for mutual exclusion arises from the presence of side effects in Multilisp: 
two threads of execution not ordered by any explicit data dependency may 
nevertheless share some common variable to which access must be controlled. 

Tasks do not have Multilisp-accessible names and cannot send messages to 
each other. Instead, synchronization is accomplished via side effects to shared 
objects in the heap. MCODE includes two mechanisms for this. One mechanism 
provides special support for futures and is described in Section 4.2.3. The other 
is a pair of special atomic operations, replace and replace-if -eq, which 
can be applied to any location in the heap. replace ( L, V) reads the current 
value of the location L and then replaces it with the value V, all in one atomic 
operation. The old value from location L is returned as the value of 
replace. replace is analogous to the conventional test-and-set operation, 
but returns a whole Lisp value, rather than just a single bit. replace - if - 
eq (L, V, X ) is like replace (L, V) except that the replacement is only 
performed if the current value of the location is eq (in the Lisp sense) to X. 
replace - if - eq returns a non-ni 1 value to indicate that the replacement was 
performed; a value of nil indicates that it was not. As discussed elsewhere [24, 
251, replace by itself is sufficient to enforce both precedence and mutual 
exclusion constraints without any need for busy-waiting, but replace - if - eq 
allows more efficient and aesthetic implementations.” 

Atomic operations, such as replace and replace - if - eq, that operate on 
only a single location, are more attractive building blocks than atomic operations 
that operate on two or more locations. In a system where different data may be 
stored at different processors, an atomic operation that involves more than one 

r2 It is interesting to compare these operations to the atomic operations that have been proposed for 
the NYU Ultracomputer [21, 22, 481. In Ultracomputer terminology, replace wouId be called 
“fetch and store.” replace if - eq has no direct equivalent in the Ultracomputer repertoire, but 
its inclusion in the Ultracomputer would be straightforward. replace - if - eq is also quite similar 
to the MOVCSF and MOVCSS instructions of the S-l [12] and the %store-conditional 
subprimitive of the Symbolics 3600 Lisp machine [55]. replace is analogous to the S-l’s RMW 
instruction. 
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storage location requires rather tight coordination between the affected proces- 
sors, while an operation that involves only a single location can be handled by 
just a single processor. Of course, if there are multiple cached copies of the object 
on which the atomic operation is to be performed, then some coordination is still 
necessary, but it can be handled by removing all but one of the copies and then 
performing the atomic operation on the sole remaining copy.13 

replace and replace-if - eq are not actually single primitives, but rather 
families of primitive operations that apply to different kinds of locations. For 
example, the replace - if - eq family includes replace -car - eq and 
replace -cdr -eq, which operate on the car and cdr, respectively, of the 
conscell supplied as their first argument. The members of the replace and 
replace - if - eq families are very low-level primitives that form part of the 
Multilisp implementation but need not be used by the average programmer. 
Higher level synchronization facilities, implemented in terms of replace and 
replace - if - eq, are made available for everyday use. The following sections 
show some useful synchronization constructs and their implementation using 
replace and replace-if -eq. These sections are intended to illustrate the 
implementation of synchronization constructs in Multilisp, not to suggest that 
everyday programming would be conducted at such a low level. 

4.2.1 Examples Using replace-if -eq. A simple illustration of the power 
of the replace - if - eq primitive is afforded by the procedure cons -onto - 
cdr (below) to cons a value val onto the cdr of an argument cell. If cell is 
a list, (cons-onto-cdr val cell) inserts the value val between the first 
and second elements of the list. The replace - cdr - eq operator performs a 
replace - i f - e q operation on the cd r of c e 11, ensuring, if there are many 
simultaneous calls to cons - onto - cdr specifying the same cell, that all the 
associated values will be inserted into the list in some order and none of the 
values will be lost. 

(defun cons-onto-cdr (val cell) 
(let ((old-cdr (cdr cell))) 

(if (replace-cdr-eq cell (cons val old-cdr) old-cdr) 
cell 
(cons-onto-cdr val cell)))) 

A similar approach can be used in extending the implementation of the 
standard Lisp procedure nconc to work in a multiprocessor environment. 
( nc one x y ) locates the last cell in the list x and modifies the cdr of that cell 
(which should contain nil) to contain y. It would be desirable to view nconc 
as atomic; thus the result of many concurrent nconc operations to the same list 
x should be a list that includes all lists that were nconc’ed to x, appended in 
some order. This goal is satisfied by the definition given in Algorithm 2 in 
Figure 2. The procedure nconc 1 does all the work; nconc is simply a wrapper 
ensuring that the value returned conforms to the standard Lisp definition. This 
procedure is used, among other places, in the maintenance of property lists in 
Multilisp. 

l3 Concert Multilisp does not currently keep multiple cached copies of any ohject,butthe “reference 
tree"protocolof[27] showsone waythatsuch caching could be implemented. 

ACMTransactionsonProgrammingLanguagesandSystems,Vol. 7,No.4,October 1985. 



522 l Robert H. Halstead, Jr. 

(defun nconc (x y) 
(if (null x) 

Y 
(progn (nconcl x y) 

X))) 

(defun nconcl (x y) 
(if (replace-cdr-eq x y nil) 

nil 
(concl (cdr x) y))) 

Fig. 2. Algorithm 2: Destructive append procedure. 

Although any individual call to cons -onto - cdr or nconc may attempt its 
operation several times before succeeding, busy-waiting in the usual sense is not 
occurring. In cons -onto - cdr, repetition by a task T of the replace - cdr - 
eq only occurs if another task performs its replacement in between T’s obtaining 
the cd r of c e 11 and T’s performing the replacement. If there are a finite number 
n of simultaneous calls, the number of attempts for any call will be at most n, 
and the total number of attempts will be at most n(n + 1)/2. This would be a 
bottleneck if an algorithm were heavily oriented around operations on a single 
list, but in our applications this has not occurred.14 

In the case of nconc, no replacement is ever attempted twice; if a replacement 
fails, there must be more to the list x, and the algorithm proceeds to the cdr of 
x. Thus the amount of work for any individual call to nconc is proportional to 
the number of elements that appear before the first element of y in the result, 
just as in sequential dialects of Lisp. 

4.2.2 Mutual Exclusion. A simple method of achieving mutual exclusion is by 
means of semaphores [ 141. We restrict ourselves to “binary” semaphores; thus at 
any given time, a semaphore S may be free, indicating that no task is currently 
using the resource controlled by S, or busy with a particular task T, meaning 
that T is using the resource. Two operations may be performed on a semaphore 
S by a task T: 

- ( wait S ) returns, having made S busy with T. This can occur immediately 
if S was free; else the return may be delayed. 

- ( signal S) , executed when S is busy with T, causes S to become free (which 
may in turn lead to its becoming busy with another task). 

Algorithm 3, in Figure 3, gives an implementation of semaphores using 
replace and replace-if-eq.15 Since the wait operation may need to 
suspend tasks that call it until the semaphore is free, Algorithm 3 uses a pair of 

“If the frequency of operations on a given list is too high, both cons-onto-cdr and nconc 
may be subject to starvation, where an infinite stream of calls from one group of processes prevents 
another process from ever completing its own request. 
I5 The use of replace - if eq in Algorithm 3 is not logically necessary. In [25] an implementation 
of semaphores is given that does just as well as Algorithm 3 at being fair and avoiding busy-waiting 
and that uses replace as its only synchronization primitive. This implementation is, however, 
considerably more complex. 
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(defun make-semaphore ( ) 
(cons '*semaphore* (cons '*free* nil))) 

(defun wait (S) 
(suspend (Lambda (suspension) 

(nconc S (cons suspension nil)) 
(activate-next S) 

(wit))) 

(defun signal (S) 
(replace-car (cdr S) '*free*) 
(activate-next S)) 

(defun activate-next (S) 
(if (not (null (cdr (cdr S)))) 

(if (replace-car-eq (cdr S) '*busy* '*free*) 
(if (not (null (cdr (cdr S)))) 

(progn (replace-cdr S (cdr (cdr S))) 
(activate (car (cdr S)))) 

(progn (replace-car (cdr S) '*free*) 
(activate-next S)))))) 

Fig.3. Algorithm 3: Implementation of semaphores. 

primitive operations for dealing with suspended tasks: 

- ( suspend F) creates a suspension S of the current task T, then creates a 
new task T ‘, in which F is called with S as its argument. When S is activated, 
T will return from the suspend call. 

- (activate S ) restarts a task from the suspension S. The current task 
continues execution following the call to activate. The restarted task 
resumes execution by returning from its call to suspend. 

Algorithm 3 also uses the primitive operation ( quit ) , which terminates the 
task that executes it. 

In Algorithm 3, a free semaphore is represented as a list 

(*semaphore* *free*...) 

that is, an object S such that ( car ( cdr S ) ) is the symbol * free *. Any items 
in the list following the symbol * free * are suspensions of tasks that are waiting 
for the semaphore. The procedure activate - next activates the first suspended 
task in this list and updates the semaphore carefully, so that multiple concurrent 
calls to activate - next on the same semaphore will result in the activation of 
only one task. activate - next converts the free semaphore into a busy sema- 
phore, represented as a list 

(*semaphore*...) 

where the ellipsis once again stands for a list of suspensions, the first of which 
is the suspension that was activated by activate-next. 

The procedure signal converts a busy semaphore S back into a free one, by 
replacing ( cdr ( cdr S ) ) , which contained the suspension of the task currently 
usingthesemaphore,withthesymbol*free*. activate-nextisthencalled 
to activate the next task that should proceed, if any. 
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The procedure wait creates a suspension of the task that calls it and then 
uses the procedure nconc, defined previously, to put that suspension at the end 
of the list of suspensions waiting on the semaphore. activate -next is then 
called, so that if the semaphore is free, it will be made busy and a waiting task 
reactivated. 

Desirable properties in a semaphore implementation are efficiency (e.g., no 
busy-waiting) and fairness (a pending wait should not be forever starved out by 
a stream of subsequent wait requests). Algorithm 3 avoids busy-waiting, but 
fairness is a tricky property, especially in a language such as Multilisp that does 
not promise fair scheduling among all tasks. The reader will recall that our 
implementation of nconc may cause starvation, calling into question the fairness 
of a wait primitive that uses none. wait is, however, fair in the sense that 
requests will be served in the order in which their nconc requests complete. 
Furthermore, the effect of this loophole in the fairness of semaphores is hard to 
distinguish from the effects of unfairness in the Concert Multilisp scheduler 
itself, discussed in Section 4.3. 

Algorithm 3 can be optimized in a couple of respects. First, the overhead of 
creating a suspension when performing a wait operation on a free semaphore 
can be avoided in most cases by a preliminary check, implemented in the 
procedure fast - wait shown below, which immediately returns (with the value 
n i 1) if applied to a free semaphore with no suspended tasks: 

(defun fast-wait (S) 
(if (and (null (cdr(cdr S))) 

(replace-car-eq (cdr S)'*busy* '*free*)) 
nil 
(wait S))) 

Second, the expense of nconc operations on long lists of suspended tasks can 
be reduced by performing the nconc operations on a separate pointer in the 
semaphore representation that points to the last conscell in the list of waiting 
tasks (this implementation is not shown, in the interest of brevity). This extra 
pointer may occasionally not point to the very last cell in the list (because 
nconc’s running concurrently may have added some conscells), but this is not a 
serious problem, since nconc will always find the end of the list and append 
additional suspensions there.16 

4.2.3 Implementation of Futures, replace and replace-if-eq are 
clumsy to use for implementing futures, so MCODE makes special provisions for 
futures. MCODE represents a future (the kind of object returned by an expression 
( future X ) ) as a special type of object containing a Lisp value, a task queue, 
a determined flag, and a lock. Initially the determined flag is false and the task 
queue is empty. 

When an MCODE instruction needs to examine the type or value of an 
operand, it first checks the type field to see if the operand is a future. If so, it 
checks the future’s determined flag. If this flag has the value true, then the value 
component of the future is fetched and used as the operand to the instruction (of 
course, it must be checked, recursively, to see if it is a future!). Otherwise, the 

I6 This extra pointer is a “hint” of the sort discussed in [41]. 
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future is not yet determined and execution of the instruction cannot proceed. To 
avoid busy-waiting in this case, the task is suspended and added to the future’s 
queue of waiting tasks, all of which will be activated when the future becomes 
determined.” This query, suspension, and enqueueing must all occur as an atomic 
operation, lest a task “fall through the cracks” by querying a future simultane- 
ously with the future’s becoming determined. Although this is not a single- 
location operation like replace and replace- if -eq, it is a single-object 
operation and therefore has most of the same advantages. 

Once a future is determined, the data structure used to represent the future 
becomes vestigial: its only function is to serve as an indirect pointer to the actual 
value, adding a small amount of overhead to each reference. To eliminate this 
overhead, the Multilisp garbage collector replaces references to determined 
futures by references to their values as it performs its scan. 

4.3 Task Management 

The creation and destruction of tasks is dictated largely by pcall and future 
forms appearing in a program; however, the definition of Multilisp allows consid- 
erable latitude in task scheduling decisions. Task scheduling in Concert Multilisp 
has two primary goals: preserving the locality of programs and avoiding the 
creation of excessive numbers of parallel tasks. 

A classical difficulty for concurrent architectures occurs when there is too 
much parallelism in the program being executed. A program that unfolds into a 
very large number of parallel tasks may reach a deadlocked state where every 
task, to make progress, requires additional storage (e.g., to make yet more tasks), 
and no more storage is available. This can happen even though a sequential 
version of the same program requires very little storage. In effect, the sequential 
version executes the tasks one after another, allowing the same storage pool to 
be reused. By trying to execute all tasks at the same time, the parallel machine 
may run out of storage. Ideally, parallel tasks should be created until the 
processing power of the parallel machine is fully utilized (we may call this 
saturation) and then execution within each task should become sequential. 

Concert Multilisp uses an unfair scheduling policy to produce this behavior. 
Each task has two possible states: active and pending. When a processor evaluates 
an expression such as ( pcall + A B ), it creates two tasks. The scheduler 
devotes all its resources to only one task, while the other is relegated to a LIFO 
pending queue associated with that processor. If the system is saturated, this 
task will remain pending until the active task has finished, as would occur in 
sequential execution. But if there are idle processors in the system, one of them 
can pick up the pending task while the other task is still active. This mechanism 
prevents the combinatorial explosion of parallelism that is possible if A and B 
recursively invoke other pc a 11’s. A similar policy is applied to the tasks created 
by an expression ( future X ) . The task newly created to evaluate X is kept 
active, while the parent task is moved to a pending queue. This somewhat 

I7 This implementation is quite similar to the semaphore implementation given above, except that 
the determination of a future activates all waiting tasks, whereas a signal operation on a semaphore 
activates only one waiting task. 
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counterintuitive policy produces the same order of execution on a saturated 
machine as if the future operator had been omitted” and therefore limits task 
queue growth to the same magnitude as stack growth in a sequential implemen- 
tation. 

Normally each processor has just one active task.ig When this task completes, 
the processor looks at its queue of pending tasks to find one to activate. If this 
queue is empty, it looks in the pending task queues of other processors to find a 
task to steal and activate. Thus a task will eventually be executed by the same 
processor that created it, unless some other processor has run out of tasks.” This 
strategy should help preserve locality of memory references. 

This system of active and pending tasks is similar to that of Keller [36, 371. 
Its impact on free storage use is dramatic: for many programs that we have 
written, increasing the number of simultaneously active tasks per processor (in 
effect, decreasing the degree of unfairness in the scheduler, since a processor’s 
active tasks are scheduled in a round-robin manner) has no effect on the speedup 
achieved through parallelism, but quickly increases the amount of heap storage 
required, until the available memory is exceeded. The effect of the unfair 
scheduler on locality has yet to be quantified. 

This unfair scheduling policy is plausible because of Multilisp’s current ori- 
entation toward obtaining parallelism through relaxation of precedence con- 
straints, rather than through speculative execution of additional eager-beaver 
operations. In the eager-beaver case, it would be important to prevent the 
speculative operations from overwhelming the machine, to the exclusion of the 
main line of the computation. The best scheduling policy for this case is somewhat 
program dependent, but often it might take the form of specifying a ratio of the 
effort to be applied to the speculative computation versus the main line, with the 
understanding that a fair scheduling algorithm would be employed to divide the 
machine’s time according to this ratio. Adding such a mechanism to the current 
Concert Multilisp scheduler, while preserving the advantages of the current 
unfair scheduler, presents an interesting design problem that should be explored 
further. 

“If an active task must be suspended, for example, while waiting for a future or a semaphore, its 
processor will find another task to activate. This is a departure from the strict LIFO discipline 
discussed above and may be viewed as a loophole in the Concert Multilisp implementation of resource 
usage control via unfairness. On the other hand, in a saturated system, tasks that would be waiting 
for a future tend to be pending while tasks calculating the values of futures tend to be active. Thus 
relatively few references to futures actually result in suspension of the referencing tasks (Section 4.5 
gives some relevant measurements). As for semaphores, they appear very sparingly in Multilisp 
programs we have written, so the effect of this loophole has not been noticeable. 
l9 The number of active tasks on a processor may exceed one in special situations, such as when tasks 
are brought to a processor to interact with I/O devices attached at that processor. When a processor 
has more than one active task, it divides its attention among them in a round-robin manner. 
*O When a processor takes a task off another processor’s queue, an argument can be made that it 
would be best to take the oldest task, rather than the newest, as is presently done in conformance 
with the LIFO discipline mentioned above. It is plausible to suppose that the oldest task is more 
likely to be the root of a substantial tree of computation, and in general it would seem that locality 
would be enhanced by moving large quanta of computation between processors, rather than small 
quanta. This hypothesis deserves an experimental test. 
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4.4 Heap Management 

The heap management algorithms developed for Concert Multilisp require a 
common memory addressable by all processors. Although such an architecture 
requires more memory bandwidth as the number of processors increases, some 
proposed architectures fitting this description, such as the NYU Ultracomputer 
[2l, 481, have very large numbers of processors. In any case, the algorithms 
furnish a case study in multiprocessor Lisp implementation, and they form the 
basis for expected extensions that relax the requirement that all memory be 
addressable by every processor; therefore it is worthwhile to outline them here. 

The garbage collection algorithm of Concert Multilisp is based on the copying, 
incremental garbage collector of Baker [6]. In this garbage collector, the processor 
interleaves periods of garbage collection activity with periods of computation, 
but each period of garbage collection is short and performs only a small part of 
a complete garbage collection pass. There is never a long, system-wide pause for 
garbage collection. 

An alternative organization for garbage collection on a multiprocessor is to 
dedicate certain processors exclusively to garbage collection and others exclu- 
sively to computation [Xl. Concert Multilisp is not organized this way since it 
offers less flexibility in adjusting the fraction of system resources allocated to 
garbage collection. 

4.4.1 The Baker Garbage Collection Algorithm. The simple Baker garbage 
collection algorithm divides the heap into two semispaces: oldspace and newspace. 
During each garbage collection period, the processor works on relocating acces- 
sible objects from oldspace to newspace. When all accessible objects have been 
relocated into newspace, oldspace can be discarded. Then the semispace desig- 
nations can be swapped: the old newspace becomes the new oldspace, and copying 
continues in the opposite direction as before. 

Figure 4 illustrates the organization of memory in more detail. Newspace is 
bounded by the addresses BOTTOM and TOP and is divided into three regions 
by the two pointers MOVED and NEW. We name these regions as follows: 

- The region between BOTTOM and MOVED is the black region. 
- The region between MOVED and NEW is the gray region. 
- The region between NEW and TOP is the empty region. 

The garbage collection algorithm preserves the following invariants: 

(1) The empty region is empty (contains no objects). 
(2) The black region contains pointers only into newspace; it contains no 

pointers into oldspace. 
(3) Pointers into the heap from the exterior always point into newspace. 

Whenever the processor needs to allocate some more storage (either for the 
user program or for relocation of an object from oldspace), it obtains that storage 
from the empty region, incrementing NEW as needed. 

When the processor is in garbage collection mode, it works on enlarging the 
size of the black region by incrementing MOVED. The invariant that the black 
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oldspace 

+ TOP 

+BOTTOM 

newspace 

Fig. 4. Memory organization for the Baker garbage collection algorithm. 

region contains no pointers into oldspace must be preserved. Hence, if the area 
added to the black region contains any pointers into oldspace, they must be 
converted to pointers into newspace. In general, this involves two kinds of 
operations: copying objects from oldspace to newspace (the moving operation), 
and updating pointers so that they point to the newspace copy of an object (the 
updating operation). 

Given a pointer into oldspace that must be updated, the object that it points 
to may or may not already have been relocated into newspace. If it has been 
relocated, only the updating operation should be performed; otherwise the sharing 
relationships present in the heap would be destroyed. Therefore, when an object 
is relocated, its old copy in oldspace is marked with a forwarding address, the 
location of the new copy in newspace. Thus every object is relocated at most 
once. 

Objects relocated from oldspace become part of the gray region, since NEW is 
incremented to make room for them. Eventually, however, all accessible objects 
in oldspace will have been relocated, and increases in the size of the black region 
will not lead to further increases in the size of the gray region. Thus MOVED 
eventually catches up to NEW and the gray region is eliminated.‘l At any point 
after this, the semispace designations may be swapped.22 

Invariant (3) concerns pointers into the heap from the exterior (which we call 
externalpointers), such as processor registers and the stack. Given this invariant, 
any external pointers may be stored into newspace, even into the black region, 
without violating the other invariants. Preserving this invariant requires special 
care (1) when fetching data from the heap into an external location, such as a 
processor register, and (2) when swapping semispaces. In case (l), we know that 
the location being fetched from is a location in newspace (we can fetch data 
directly from only those locations that are pointed to by an external pointer, and 
all external pointers point into newspace), but we do not know whether it is in 
the black region or the gray region. If the location is in the gray region, it might 
contain a pointer into oldspace, and our invariant would be violated by delivering 

” If NEW reaches TOP before MOVED reaches NEW, then there is insufficient heap storage and 
the algorithm fails. 
” It is not necessary to swap semispaces immediately; it is permissible to wait for the empty region 
to be used up before swapping semispaces and resuming garbage-collection activity. 
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this pointer to the exterior. So the pointer must first be updated into a newspace 
pointer, if necessary by moving the object it points to, and then delivered to the 
exterior. 

To preserve invariant (3) when swapping semispaces, all external pointers 
must be converted to newspace pointers as part of the semispace-swapping 
operation. The semispace swap is accomplished by setting BOTTOM, MOVED, 
and NEW to the bottom of the new newspace (the old oldspace), and setting 
TOP to the top of the new newspace. Then all the external pointers are converted 
to pointers into the new newspace by relocating the objects they point to (this 
will cause NEW to be incremented). Processing can then continue, interspersed 
with periods of additional garbage collection activity. 

The semispace swap includes the potentially time-consuming operation of 
converting all pointers in the stack, if the stack is not located in the heap. This 
delay could compromise the real-time properties of the garbage collection algo- 
rithm, but fortunately in Concert Multilisp, the majority of a task’s stack is kept 
in the heap, as discussed in Section 4.1. Only a small top-of-stack cache, outside 
of the heap, needs to be scanned when swapping semispaces. 

4.4.2 The Concert Multilisp Garbage Collector. In Concert Multilisp, every 
processor has its own oldspace and newspace in its local memory. Thus each 
processor has its own private newspace in which to create objects, eliminating 
contention between processors for allocation from the heap and increasing the 
fraction of accesses that go to local memory. The aggregate of the individual 
processors’ oldspaces can be thought of as the system’s oldspace, and the 
individual processors’ newspaces can be thought of collectively as the system’s 
newspace. Each processor’s newspace is divided, as before, into empty, gray, and 
black regions, obeying invariants that may be stated as 

(1) The empty region is empty. 
(2) The black region contains pointers only into newspace-either the new- 

space of the same processor, or that of any other processor. 
(3) External pointers all point into the newspace of some processor. 

As before, gray regions may contain pointers to any newspace or oldspace. 
During its garbage collection periods, each processor P increments its MOVED 

pointer to enlarge its black region. If a pointer to an object X in oldspace is 
encountered during this process, it is relocated. If X already has a forwarding 
address in the newspace of some processor, that forwarding address is used. This 
preserves the sharing relationships in the heap. If X does not have a forwarding 
address, then X is relocated into the newspace of processor P (no matter which 
oldspace X was in). This new location becomes the forwarding address of X. In 
a multiprocessor environment, this portion of the algorithm has some synchro- 
nization requirements, whose discussion we postpone for a moment. 

The semispace swap is an activity that must be coordinated among all the 
processors. As long as any processor still has a gray region in its newspace, no 
processor can discard its oldspace, because the gray region could contain pointers 
into any processor’s oldspace. As soon as all gray regions are gone, the processors 
may swap semispaces, but all of them must perform the swap at the same time; 
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otherwise, one processor could swap semispaces early and begin to build up a 
black region in its new newspace. This region could contain pointers into other 
processors’ newspaces. Then if the other processors swapped semispaces later, 
these pointers would become pointers into oldspace, violating the invariant for 
black regions. Thus this multiprocessor garbage collection algorithm contains 
one global synchronization point: at some point after all gray regions have been 
eliminated, and before any processor’s empty region runs out, all processors must 
suspend processing activity, swap spaces, and then resume processing. 

The algorithm has some additional, nonglobal synchronization requirements, 
alluded to above, which occur during the moving and updating operations asso- 
ciated with the relocation of pointers in gray regions, which must be performed 
atomically. Only one processor (the processor in whose newspace the pointer 
appears) can try to update. a pointer in expanding its black region, but any 
processor might at the same moment try to read the pointer, which will also 
require it to be updated. Thus several processors can simultaneously attempt the 
updating operation on the same pointer. Alternatively, several processors may 
simultaneously access different pointers to the same object and hence collide 
trying the moving operation. 

Both types of collision are quite unlikely (experience with Concert Multilisp 
running on eight processors shows less than one collision per second). Therefore, 
any locking mechanism that assures the necessary atomicity will do-contention 
for locks is not heavy. Concert Multilisp associates a lock bit with each pointer, 
to handle the updating operation, and a lock bit with each object in the oldspace, 
for the moving operation. 

4.4.3 Discussion. This garbage collection algorithm has been implemented 
and functions correctly. Three aspects of the algorithm invite further comment: 
(1) its impact on locality of reference, (2) its reliance on shared memory, and (3) 
the efficiency of its use of memory. 

This garbage collection algorithm has the intriguing potential of dynamically 
enhancing the locality of reference in the heap. Whenever an object Xis relocated, 
it is relocated into the newspace of a processor that has at least one reference to 
X. Thus if a processor P creates a data structure and later gives a pointer to that 
structure to processor Q, without keeping a copy of the pointer for itself, the 
entire data structure will eventually migrate to the newspace of Q, where it is 
presumably more likely to be used. The significance of this effect, however, is as 
yet unmeasured. 

The algorithm has been stated as an algorithm for a shared-memory multipro- 
cessor, but its only real requirement is for a common address space, so that every 
processor can name every memory cell, and so that a given address names the 
same cell no matter which processor uses the address. If this requirement is 
satisfied, the algorithm will function correctly, although its performance will be 
poor if access to remote memory cells is too slow. The magnitude of this 
deterioration depends on the locality of reference in the system. Probably the 
situation can be improved by changing the garbage collection algorithm to “batch” 
its remote accesses (at the cost of some additional complexity) so that many 
remote accesses can be active simultaneously, making their latency less signifi- 
cant than the bandwidth available for them. 
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The efficiency of memory use by incremental garbage collectors has been 
studied by Baker [6]. The only new wrinkle in our multiprocessor algorithm is 
that the oldspace and newspace are divided up into pieces that are dedicated to 
different processors. This raises the possibility of failure because one processor 
has run out of newspace for new allocation, even though there may be plenty of 
room left in other processors’ newspaces. This effect has (unfortunately) been 
observed frequently on Concert Multilisp. It can be ameliorated by allocating 
plenty of extra storage to each processor, but there is a better solution. A 
processor’s newspace (or oldspace) need not be one contiguous block. Instead, 
memory can be organized into rather large parcels (say 64K or 128K bytes each). 
If a processor runs out of newspace before the system is ready for a semispace 
swap, the processor can request an extension parcel from a pool that is set aside 
for that purpose, and carry on. (Alternatively, as suggested by one of the referees, 
the extension parcel could be obtained out of the newspace of another processor.) 
This parcel may be in a less favorable position for access by the processor, but 
at least the system can continue to operate. A scheme such as this is only a 
minor extension of the basic garbage collection algorithm, and dynamically 
compensates for differences in the memory requirements of different processors. 

4.5 Performance of Concert Multilisp 

The current Concert Multilisp implementation, running on one processor, per- 
forms at roughly the same level as interpreted Franz Lisp code [16] running on 
the same processor. Given a suitably parallel Multilisp program, this performance 
has been observed to improve by very nearly a factor of n when n processors are 
used, for n 5 8. 

The rate of execution of MCODE instructions depends on two factors: the 
instruction mix and how much time the processor is currently spending on 
garbage collection. On the MC68000 processor running at an B-MHz clock rate, 
the execution rate is approximately 2000 to 6000 MCODE instructions per CPU , 
second. The lower rates occur in programs that use futures extensively-the 
instructions that implement futures take longer individually, and they also 
allocate more space in the heap, increasing the proportion of time devoted to 
garbage collection. 

The Quicksort program of Algorithm 1 was run on Concert Multilisp for 
different sizes of randomly ordered input lists and different numbers of proces- 
sors.23 Also measured were a “sequential” program obtained from Algorithm 1 by 
removing all uses of future, and an “unfolded” version of Algorithm 1 ob- 
tained by a two-way unfolding of partition such that each recursive call to 
partition processes two elements of its argument list instead of one. The 
statistics measured were (1) total execution time, (2) the number of futures 
created, and (3) the number of futures that were waited for by one or more tasks 
before being determined. 

These measurements are subject to variability from two sources. First, semi- 
space swaps and the ensuing garbage collection activity occur at arbitrary 

23 The procedures bundle-parts, right-part, and left-part of Algorithm 1 were open-coded 
in the version of the algorithm used to obtain these figures, reducing somewhat the number of 
procedure calls required. 
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Fig. 5. Performance of Quicksort on Concert Multilisp. (a) Execution times. The dashed lines are 
the curves of linear speedup. (b) Execution times with standard deviations. 

moments with respect to program execution, causing some executions of the 
same program to take longer than others. Second, the performance of the 
Quicksort algorithm itself depends somewhat on the ordering of the particular 
list being sorted. Due to the variability from these sources, each sort was 
performed four times on each of ten different randomly generated lists of each 
length. The graphs in Figure 5 show the mean execution times obtained from 
these measurements for lists of length 128 and 256. For lists shorter than 128 
elements, the standard deviation of the measurements is large enough to cast 
considerable doubt on the shape of the execution time curves, but for lists of 256 
elements the standard deviations are modest, as shown in Figure 5b. 
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Fig. 6. Future creation and access statistics for Multilisp Quicksorts. The number of futures 
waited for is zero when only one processor is used, this point is not shown on these log-log 
plots. 

The curves have noticeable kinks at N = 4 processors. These are probably due 
to variations in the amount of memory available for heap storage in the different 
experiments. The l-, 2-, and 4-processor measurements use a single region of 1.5 
megabytes of memory, divided among the participating processors. Thus the 
amount of memory allocated to each individual processor falls as more processors 
are added. Since the sequential Quicksort runs on only one processor, this tends 
to increase the amount of garbage collection required, causing some increase in 
average execution time as the number of processors increases. The parallel 
algorithms, however, are able to use all of the available memory and therefore do 
not suffer from this effect. 

Beyond four processors, the amount of memory per processor remains constant 
at 3/8 megabyte, and therefore the total amount of memory available for heap 
storage increases. This does not benefit the sequential sort, whose execution time 
curve can be seen to level off, but appears to benefit the parallel sorts, whose 
curves can be seen to resume a more rapid descent. 

Figure 6 gives some statistics about the use of futures by the parallel and 
unfolded Quicksort programs: the average number of futures created and the 
average number of futures that had one or more tasks waiting for their value at 
the time they were determined. The number of futures created by each program 
is independent of the number of processors used and depends only on the input 
list. Since the only difference between the sequential and parallel Quicksorts is 
the insertion of futures, the overhead per future can be calculated from the 
execution statistics on one processor as 

(parallel running time) - (sequential running time) 
number of futures created by the parallel algorithm ’ 
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This number is about 6.5 milliseconds. For comparison, the cost of a procedure 
call is approximately 1.3 to 1.6 milliseconds. 

The number of futures waited for is much less than the total number created, 
especially for small numbers of processors. This shows the effect of Concert 
Multilisp’s LIFO scheduler: since tasks that are created to determine futures 
have priority over the tasks that use those futures, most futures already have a 
value before their first use. In fact, other experiments suggest that most of the 
futures that are never waited for correspond to tasks that complete before their 
parent tasks ever leave pending status. 

The Quicksort programs use futures for very fine-grained tasks; in fact, no 
other Multilisp program that has been written shows a larger ratio between 
execution time on one processor with and without futures. Programs using futures 
with coarser granularity suffer much less performance degradation; for example, 
a Quicksort using an ordering criterion more complex than simple integer 
comparison suffers proportionately less of a penalty for the use of futures. 
Nevertheless, it would be desirable to be able to use futures efficiently even at 
the level of granularity of our parallel Quicksort program. Whenever Concert 
Multilisp’s LIFO scheduler defers a parent task until the completion of a child 
task, the expense of task creation has been wasted; the child task might as well 
have executed as a subroutine in the parent task. This appears to be true in a 
large fraction of all task creations; thus an implementation that selectively ignores 
certain uses of future could dramatically reduce the cost of programming with 
futures, without reducing the parallelism available. This may be one approach to 
making futures useful at finer levels of granularity. The performance of the 
unfolded Quicksort illustrates the performance improvements obtained by one 
particular strategy of selectively eliminating certain futures. 

Although it may be possible to improve the performance of futures relative to 
other operations, Concert Multilisp remains uniformly slow in absolute terms. 
This slowness is due to the predominance of operations that are not particulary 
efficient on the MC68000: 

- Many field extractions and insertions are required for examination and con- 
struction of tagged data. 

- Every access to a datum in the heap entails checking bits in the datum to see 
if it is a pointer into oldspace or is locked. 

- All stack pops or pushes require a check against the bounds of the current 
task’s top-of-stack cache. 

- Interpretive overhead results from the fact that the MC68000 does not directly 
execute MCODE; however, compilation of Multilisp into MC68000 code is 
unattractive, due to the length of the code that would have to be generated for 
the operations listed above. 

It is reasonable to suppose that these performance figures could be uniformly 
improved by one to two orders of magnitude with a suitably designed processor, 
without invoking any aggressive hardware technology. This would, of course, 
increase the load on the system used for communication between the processors 
and the heap. However, a “multiprogramming” design, in which each processor 
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could keep several (e.g., three to ten) tasks active simultaneously, could go a long 
way toward masking the latency of the interconnect medium, by ensuring that a 
processor still has work to do, even if some of its tasks are blocked awaiting the 
completion of remote accesses. 24 Thus the bandwidth of the interconnect medium 
may take on more significance than its latency, allowing some interesting new 
memory system designs. The development of hardware architectures for Multi- 
lisp-like languages promises to be a rich area of research; however, before we 
embark seriously on it we need to know more about the properties of the programs 
to be run. 

5. CONCLUSION AND DISCUSSION 

A strong motivation for the present work is the need for more actual experience 
with techniques for programming parallel machines. If the Multilisp project 
progresses as expected, its most important results will be 

- Empirical validation of programming language ideas, such as peal 1 and 
future, which have been around for awhile, but which have not been used on 
an actual parallel machine. In the course of writing programs in Multilisp, we 
will be testing, fine-tuning, and quite likely adding to this set of ideas. 

- Development of a body of working, parallel programs that can be used as 
benchmarks for future research into architectures for parallel computation. 

- Exploration of solutions to various problems that lie between the programming 
language and the system level. Exception and error handling [28], debugging, 
and the previously discussed issues of fairness in scheduling are three examples 
of such problems. The parallel execution environment, and in particular the 
future construct of Multilisp, require standard solutions to these problems 
to be reexamined. 

- Development of implementation algorithms, such as those discussed in Section 
4, for Lisp-like langauges on parallel machines. 

Many of the design goals of Multilisp are the same as those of any other 
general-purpose high-level language: applicability to a wide range of problems, 
support for a good software engineering discipline, and independence from the 
details of the underlying implementation. In addition, Multilisp has the goal of 
making it easy to write programs with large enough amounts of parallelism to be 
able to utilize large multiprocessors. Key features of Multilisp that work toward 
these goals are the use of lexical scoping, the status of procedures as first-class 
data objects, the support of a garbage collected heap, and the pc a 11 and future 
constructs for introducing parallelism. 

On the implementation level, this paper presents schemes for synchronization, 
task scheduling, and garbage collection in a multiprocessor environment. These 
algorithms, notably the Concert Multilisp garbage collector, should be widely 
applicable to other parallel Lisp dialects. Some of the techniques, such as the use 
of unfair scheduling to help control resource usage, also raise intriguing new 
semantic questions for language developers to consider. 

*’ This approach is used by the Denelcor HEP-1 processor [51]. 
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