
538CS 538 Spring 2004
©

Bounded Polymorphism
In Pizza we can use interfaces to
bound the type parameters a class
will accept.
Recall our Compare interface:
interface Compare {

 boolean lessThan(Object o1,
 Object o2);

}

We can specify that a parameterized
class will only takes types that
implement Compare:
class LinkedList<T implements

Compare> { ... }

539CS 538 Spring 2004
©

In fact, we can improve upon how
interfaces are defined and used.
Recall that in method lessThan we
had to use parameters declared as
type Object to be general enough to
match (and accept) any object type.
This leads to clumsy casting (with
run-time correctness checks) when
lessThan is implemented for a
particular type:
class IntCompare implements Compare {
 public boolean lessThan(Object i1,
 Object i2){
 return ((Integer) i1).intValue() <
 ((Integer)i2).intValue();}
}

540CS 538 Spring 2004
©

Pizza allows us to parameterize class
definitions with type parameters, so
why not do the same for interfaces?
In fact, this is just what Pizza does.
We can now define Compare as
interface Compare<T> {
 boolean lessThan(T o1, T o2);
}

Now we define class LinkedList as
class LinkedList<T implements

Compare<T> > { ... }

Given this form of interface
definition, no casting (from type
Object) is needed in classes that
implement Compare:
class IntCompare implements

Compare<Integer> {
 public boolean lessThan(Integer i1,

Integer i2){
 return i1.intValue() <
 i2.intValue();}
}

541CS 538 Spring 2004
©

First-class Functions in Pizza
In Java, functions are treated as
constants that may appear only in
classes.
To pass a function as a parameter, you
must pass a class that contains that
function as a member. For example,
class Fct {
 int f(int i) { return i+1; }
}
class Test {

static int call(Fct g, int arg)
 { return g.f(arg); }
}

542CS 538 Spring 2004
©

Changing the value of a function is
even nastier. Since you can’t assign to
a member function, you have to use
subclassing to override an existing
definition:
class Fct2 extends Fct {
 int f(int i) { return i+111; }
}

Computing new functions during
executions is nastier still, as Java
doesn’t have any notion of a lambda-
term (that builds a new function).

543CS 538 Spring 2004
©

Pizza makes functions first-class, as
in ML. You can have function
parameters, variables and return
values. You can also define new
functions within a method.
The notation used to define the type
of a function value is
(T 1,T 2, ...)->T 0

This says the function will take the
list (T 1,T 2, ...) as it arguments
and will return T0 as its result.
Thus

(int)->int

represents the type of a method like
int plus1(int i) {return i+1;}

544CS 538 Spring 2004
©

The notation used by Java for fixed
functions still works. Thus
static int f(int i){return 2*i;};

denotes a function constant, f .
The definition
 static (int)->int g = f;

defines a field of type (int)->int
named g that is initialized to the
value of f .
The definition
static int call((int)->int f,
 int i)
 {return f(i);};

defines a constant function that takes
as parameters a function value of
type (int)->int and an int value.
It calls the function parameter with
the int parameter and returns the
value the function computes.

545CS 538 Spring 2004
©

Pizza also has a notation for
anonymous functions (function
literals), similar to fn in ML and
lambda in Scheme. The notation
fun (T 1 a 1, T 2 a 2, ...) -> T 0
 {Body}

defines a nameless function with
arguments declared as (T 1 a1, T 2 a2,

...) and a result type of T0. The
function’s body is computed by
executing the block {Body} .
For example,
static (int)->int compose(

 (int)->int f, (int)->int g){
 return fun (int i) -> int
 {return f(g(i));};

}

defines a method named compose . It
takes as parameters two functions, f
and g, each of type (int)->int .

546CS 538 Spring 2004
©

The function returns a function as its
result. The type of the result is
(int)->int and its value is the
composition of functions f and g:
 return f(g(i));

Thus we can now have a call like
compose(f1,f2)(100)

which computes f1(f2(100)) .

547CS 538 Spring 2004
©

With function parameters, some
familiar functions can be readily
programmed:
class Map {
 static int[] map((int)->int f,
 int[] a){
 int [] ans =
 new int[a.length];
 for (int i=0;i<a.length;i++)
 ans[i]=f(a[i]);
 return ans;
 };
}

548CS 538 Spring 2004
©

And we can make such operations
polymorphic by using parametric
polymorphism:
class Map<T> {
 private static T dummy;
 Map(T val) {dummy=val;};
 static T[] map((T)->T f,

T[] a){
 T [] ans = (T[]) a.clone();

for (int i=0;i<a.length;i++)
 ans[i]=f(a[i]);
 return ans;
 };
}

549CS 538 Spring 2004
©

Algebraic Data Types
Pizza also provides “algebraic data
types” which allow a type to be
defined as a number of cases. This is
essentially the pattern-oriented
approach we saw in ML.
A list is a good example of the utility
of algebraic data types. Lists come in
two forms, null and non-null, and we
must constantly ask which form of
list we currently have. With patterns,
the need to consider both forms is
enforced, leading to a more reliable
programming style.
In Pizza, patterns are modeled as
“cases” and grafted onto the existing
switch statement (this formulation is
a bit clumsy):

550CS 538 Spring 2004
©

class List {
 case Nil;
 case Cons(char head,
 List tail);
 int length(){
 switch(this){
 case Nil: return 0;
 case Cons(char x, List t):
 return 1 + t.length();
 }
 }
}

551CS 538 Spring 2004
©

And guess what! We can use
parametric polymorphism along with
algebraic data types:
class List<T> {
 case Nil;
 case Cons(T head,
 List<T> tail);
 int length(){
 switch(this){
 case Nil: return 0;
 case Cons(T x, List<T> t):
 return 1 + t.length();
 }
 }
}

552CS 538 Spring 2004
©

Enumerations as Algebraic
Data Types

We can use algebraic data types to
obtain a construct missing from Java
and Pizza—enumerations.
We simply define an algebraic data
type whose constructors are not
parameterized:
class Color {
 case Red;
 case Blue;
 case Green;
 String toString() {
 switch(this) {
 case Red: return "red";
 case Blue: return "blue";
 case Green: return "green";
 }
 }
}

553CS 538 Spring 2004
©

This approach is better than simply
defining enumeration values as
constant (final) integers:

final int Red = 1;

final int Blue = 2;

final int Green = 3;

With the algebraic data type
approach, Red, Blue and Green , are
not integers. They are constructors
for the type Color . This leads to more
thorough type checking.

554CS 538 Spring 2004
©

Reading Assignment
• Python Tutorial

(linked from class web page)

555CS 538 Spring 2004
©

Python
One of the newest and most
innovative scripting languages is
Python, developed by Guido van
Rossum in the mid-90s. Python is
named after the BBC “Monty Python”
television series.
Python blends the expressive power
and flexibility of earlier scripting
languages with the power of object-
oriented programming languages.
It offers a lot to programmers:
• An interactive development mode as

well as an executable “batch” mode
for completed programs.

• Very reasonable execution speed. Like
Java, Python programs are compiled.
Also like Java, the compiled code is in

556CS 538 Spring 2004
©

an intermediate language for which
an interpreter is written. Like Java
this insulates Python from many of
the vagaries of the actual machines
on which it runs, giving it portability
of an equivalent level to that of Java.
Unlike Java, Python retains the
interactivity for which interpreters
are highly prized.

• Python programs require no
compilation or linking. Nevertheless,
the semi-compiled Python program
still runs much faster than its
traditionally interpreted rivals such as
the shells, awk and perl.

• Python is freely available on almost
all platforms and operating systems
(Unix, Linux, Windows, MacOs, etc.)

557CS 538 Spring 2004
©

• Python is completely object oriented.
It comes with a full set of objected
oriented features.

• Python presents a first class object
model with first class functions and
multiple inheritance. Also included
are classes, modules, exceptions and
late (run-time) binding.

• Python allows a clean and open
program layout. Python code is less
cluttered with the syntactic “noise”
of declarations and scope definitions.
Scope in a Python program is defined
by the indentation of the code in
question. Python thus breaks with
current language designs in that
white space has now once again
acquired significance.

558CS 538 Spring 2004
©

• Like Java, Python offers automated
memory management through run-
time reference counting and garbage
collection of unreferenced objects.

• Python can be embedded in other
products and programs as a control
language.

• Python’s interface is well exposed and
is reasonably small and simple.

• Python’s license is truly public.
Python programs can be used or sold
without copyright restrictions.

• Python is extendable. You can
dynamically load compiled Python,
Python source, or even dynamically
load new machine (object) code to
provide new features and new
facilities.

559CS 538 Spring 2004
©

• Python allows low-level access to its
interpreter. It exposes its internal
plumbing to a significant degree to
allow programs to make use of the
way the plumbing works.

• Python has a rich set of external
library services available. This
includes, network services, a GUI API
(based on tcl/Tk), Web support for
the generation of HTML and the CGI
interfaces, direct access to databases,
etc.

560CS 538 Spring 2004
©

Using Python
Python may be used in either
interactive or batch mode.
In interactive mode you start up the
Python interpreter and enter
executable statements. Just naming a
variable (a trivial expression)
evaluates it and echoes its value.
For example (>>> is the Python
interactive prompt):
>>> 1
1

>>> a=1

>>> a
1

>>> b=2.5

>>> b
2.5

561CS 538 Spring 2004
©

>>> a+b
3.5

>>> print a+b
3.5

You can also incorporate Python
statements into a file and execute
them in batch mode. One way to do
this is to enter the command
python file.py

where file.py contains the Python
code you want executed. Be careful
though; in batch mode you must use
a print (or some other output
statement) to force output to be
printed. Thus
1

a=1

a

562CS 538 Spring 2004
©

b=2.5

b

a+b

print a+b

when run in batch mode prints only
3.5 (the output of the print
statement).
You can also run Python programs as
Unix shell scripts by adding the line
#! /usr/bin/env python
to the head of your Python file.
(Since # begins Python comments,
you can also feed the same
augmented file directly to the Python
interpreter)

563CS 538 Spring 2004
©

Python Command Format
In Python, individual primitive
commands and expressions must
appear on a single line.
This means that
 a = 1

 +b

does not assign 1+b to a! Rather, it
assigns 1 to a, then evaluates +b.
If you wish to span more than one
line, you must use \ to escape the
line:
a = 1 \

 +b

is equivalent to
a = 1 +b

564CS 538 Spring 2004
©

Compound statements, like if
statements and while loops, can span
multiple lines, but individual
statements within an if or while (if
they are primitive) must appear one a
single line.

Why this restriction?
With it, ; ’s are mostly unnecessary!
A ; at the end of a statement is legal
but usually unnecessary, as the end-
of-line forces the statement to end.
You can use a ; to squeeze more than
one statement onto a line, if you
wish:
a=1; b=2 ; c=3

565CS 538 Spring 2004
©

Identifiers and Reserved Words
Identifiers look much the same as in
most programming languages. They
are composed of letters, digits and
underscores. Identifiers must begin
with a letter or underscore. Case is
significant. As in C and C++,
identifiers that begin with an
underscore often have special
meaning.

Python contains a fairly typical set of
reserved words:
and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass
def finally in print

566CS 538 Spring 2004
©

Numeric Types
There are four numeric types:
1. Integers, represented as a 32 bit (or

longer) quantity. Digits sequences
(possibly) signed are integer literals:
1 -123 +456

2. Long integers, of unlimited precision.
An integer literal followed by an l or
L is a long integer literal:
12345678900000000000000L

3. Floating point values, represented as a
64 bit floating point number. Literals
are of fixed decimal or exponential
form:
123.456 1e10 6.0231023

4. Complex numbers, represented as a
pair of floating point numbers. In
complex literals j or J is used to

567CS 538 Spring 2004
©

denote the imaginary part of the
complex value:

1.0+2.0j -22.1j 10e10J+20.0

There is no character type. A literal
like 'a' or "c" denotes a string of
length one.

There is no boolean type. A zero
numeric value (any form), or None
(the equivalent of void) or an empty
string, list, tuple or dictionary is
treated as false; other values are
treated as true.
Hence
 "abc" and "def"

is treated as true in an if , since both
strings are non-empty.

