Conditional Expressions in Scheme

A predicate is a function that returns a boolean value. By convention, in Scheme, predicate names end with “?”. For example,

number? symbol? equal?
null? list?

In conditionals, #f is false, and everything else, including #t, is true.

The if expression is

(if pred E1 E2)

First pred is evaluated. Depending on its value (#f or not), either E1 or E2 is evaluated (but not both) and returned as the value of the if expression.

For example,

(if (= 1 (+ 0 1))
 'Yes
 'No
)

(define
 (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1)))
)
)

Generalized Conditional

This is similar to a switch or case:

(cond
 (p1 e1)
 (p2 e2)
 ...
 (else en)
)

Each of the predicates (p1, p2, ...) is evaluated until one is true (≠ #f). Then the corresponding expression (e1, e2, ...) is evaluated and returned as the value of the cond. else acts like a predicate that is always true.

Example:

(cond
 ((= a 1) 2)
 ((= a 2) 3)
 (else 4)
)

Recursion in Scheme

Recursion is widely used in Scheme and most other functional programming languages. Rather than using a loop to step through the elements of a list or array, recursion breaks a problem on a large data structure into a simpler problem on a smaller data structure.

A good example of this approach is the append function, which joins (or appends) two lists into one larger list containing all the elements of the two input lists (in the correct order).

Note that cons is not append. cons adds one element to the head of an existing list.
Thus
(cons 'a b) '(c d) \Rightarrow
((a b) c d)
(append 'a b) '(c d) \Rightarrow
(a b c d)

The append function is predefined in
Scheme, as are many other useful
list-manipulating functions (consult
the Scheme definition for what's
available).

It is instructive to define append
directly to see its recursive approach:

(define
(append L1 L2)
(if (null? L1) L2
(cons (car L1) (append (cdr L1) L2))))

Let's trace (append '(a b) '(c d))

Our definition is
(define
(append L1 L2)
(if (null? L1) L2
(cons (car L1) (append (cdr L1) L2))))
)

Now L1 = (a b) and L2 = (c d).

(null? L1) is false, so we evaluate
(cons (car L1) (append (cdr L1) L2))
= (cons (car 'a b) (append (cdr 'a b) '(c d)))
= (cons 'a (append '(b) '(c d))

We need to evaluate
(append '(b) '(c d))

In this call, L1 = (b) and L2 = (c d).

L1 is not null, so we evaluate
(cons (car L1) (append (cdr L1) L2))
= (cons (car 'b) (append (cdr 'b) '(c d))

Reversing a List

Another useful list-manipulation
function is rev, which reverses the
members of a list. That is, the last
element becomes the first element,
the next-to-last element becomes the
second element, etc.

For example,
(rev '(1 2 3)) \Rightarrow (3 2 1)

The definition of rev is
straightforward:
(define (rev L)
(if (null? L) L
(append (rev (cdr L)) (list (car L))))
)

Note:
Source files for append, and other
Scheme examples, may be found in
~cs538-1/public/scheme/example1.scm,
~cs538-1/public/scheme/example2.scm,
etc.
As an example, consider
\[(\text{rev } (1 \ 2))\]
Here \(L = (1 \ 2)\). \(L\) is not null so we evaluate
\[
(\text{append } \text{rev} (\text{cdr } L)) \quad \text{(list } (\text{car } L))) = \\
(\text{append } \text{rev} (\text{cdr } '(1 \ 2))) \quad \text{(list } (\text{car } '(1 \ 2)))) = \\
(\text{append } \text{rev} '(2)) \quad (\text{list } 1)) = \\
(\text{append } \text{rev} '(2)) \quad '(1))
\]
We must evaluate \(\text{rev} '(2)\)
Here \(L = (2)\). \(L\) is not null so we evaluate
\[
(\text{append } \text{rev} (\text{cdr } L)) \quad \text{(list } (\text{car } L))) = \\
(\text{append } \text{rev} (\text{cdr } '(2))) \quad \text{(list } (\text{car } '(2)))) = \\
(\text{append } \text{rev} ()) \quad (\text{list } 2)) = \\
(\text{append } \text{rev} ()) \quad '(2))
\]
We must evaluate \(\text{rev} ()\)
Here \(L = ()\). \(L\) is null so \(\text{rev} ()\) =

Thus \(\text{append } \text{rev} ()' (2)\) =
\[
(\text{append } () \quad '(2)) = (2) = (\text{rev } '(2))
\]
Finally, recall \(\text{rev } '(1 \ 2)\) =
\[
(\text{append } \text{rev } '(2)) \quad '(1)) = \\
(\text{append } '(2)) \quad '(1)) = (2 \ 1)
\]
As constructed, \text{rev} only reverses the “top level” elements of a list. That is, members of a list that themselves are lists aren’t reversed.

For example,
\[(\text{rev } '((1 \ 2) \ (3 \ 4))) = \\
((3) \ (2 \ 1))
\]
We can generalize \text{rev} to also reverse list members that happen to be lists.

To do this, it will be convenient to use Scheme’s \text{let} construct.

The \text{let} Construct

Scheme allows us to create local names, bound to values, for use in an expression.

The structure is
\[
\text{(let ((id1 val1) (id2 val2) ...) expr)}
\]
In this construct, \text{val1} is evaluated and bound to \text{id1}, which will exist only within this \text{let} expression. If \text{id1} is already defined (as a global or parameter name) the existing definition is hidden and the local definition, bound to \text{val1}, is used. Then \text{val2} is evaluated and bound to \text{id2}, …. Finally, \text{expr} is evaluated in a scope that includes \text{id1}, \text{id2}, ...

For example,
\[
\text{(let ((a 10) (b 20))}
\quad (+ a b)) \Rightarrow 30
\]
Using a \text{let}, the definition of \text{revall}, a version of \text{rev} that reverses all levels of a list, is easy:

\[
\text{(define (revall L)}
\quad \text{(if (null? L)}
\quad \text{L)}
\quad \text{(let ((E (if (list? (car L))}
\quad \text{(revall (car L))}
\quad \text{(car L))))}
\quad \text{(append (revall (cdr L))}
\quad \text{(list E))}}
\quad)
\quad)
\quad)
\text{(revall ' ((1 \ 2) \ (3 \ 4))) ⇒}
\quad ((4 \ 3) \ (2 \ 1))
\]
Subsets

Another good example of Scheme's recursive style of programming is subset computation.
Given a list of distinct atoms, we want to compute a list of all subsets of the list values.
For example,

\[\text{(subsets ' (1 2 3)) } \Rightarrow \]
\[(() (1) (2) (3) (1 2) (1 3) (2 3) (1 2 3)) \]

The order of atoms and sublists is unimportant, but all possible subsets of the list values must be included.
Given Scheme's recursive style of programming, we need a recursive definition of subsets.

Thus \(\text{(subsets ' (1 2 3)) } \Rightarrow \)
\[(() (1) (2) (3) (1 2) (1 3) (2 3) (1 2 3)) \]
plus
\[((3) (1 3) (2 3) (1 2 3)) \]

This insight leads to a concise program for subsets.
We will let \(\text{(distrib L E)} \) be a function that "distributes" \(E \) into each list in \(L \).
For example,

\[\text{(distrib ' (1) (2) (1 2)) 3) } = \]
\[((3) (3 1) (3 2) (3 1 2)) \]

(\emph{define} \text{(distrib L E)}
\begin{verbatim}
(if (null? L)
 ()
 (cons (cons E (car L))
 (distrib (cdr L) E)))
\end{verbatim})

We will let \(\text{(extend L E)} \) extend a list \(L \) by distributing element \(E \) through \(L \) and then appending this result to \(L \).
For example,

\[\text{(extend ' (() (a)) 'b) } \Rightarrow \]
\[(() (a) (b) (b a)) \]

(\emph{define} \text{(extend L E)}
\begin{verbatim}
(append L (distrib L E))
\end{verbatim})

Now subsets is easy:

(\emph{define} \text{(subsets L)}
\begin{verbatim}
(if (null? L)
 (list ()
 (extend (subsets (cdr L)) (car L)))
)
\end{verbatim})