Conditional Expressions in Scheme

A predicate is a function that returns a boolean value. By convention, in Scheme, predicate names end with “?”

For example,

```
number?  symbol?  equal?
null?    list?
```

In conditionals, #f is false, and everything else, including #t, is true.

The `if` expression is

```
(if pred E1 E2)
```

First `pred` is evaluated. Depending on its value (#f or not), either `E1` or `E2` is evaluated (but not both) and returned as the value of the `if` expression.
For example,

\[
\text{(if } (= 1 (+ 0 1)) \text{ 'Yes 'No)}
\]

\[
\text{(define } \\
\text{ (fact n) } \\
\text{ (if } (= n 0) \text{ 1 } \\
\text{ (* n (fact (- n 1)))))}
\]
Generalized Conditional

This is similar to a switch or case:

```
(cond
  (p1  e1)
  (p2  e2)
  ...
  (else  en)
)
```

Each of the predicates \((p_1, p_2, \ldots)\) is evaluated until one is true \((\neq \#f)\). Then the corresponding expression \((e_1, e_2, \ldots)\) is evaluated and returned as the value of the \(\text{cond}\). \(\text{else}\) acts like a predicate that is always true.

Example:

```
(cond
  ((= a 1)  2)
  ((= a 2)  3)
  (else  4)
)
```
Recursion in Scheme

Recursion is widely used in Scheme and most other functional programming languages. Rather than using a loop to step through the elements of a list or array, recursion breaks a problem on a large data structure into a simpler problem on a smaller data structure.

A good example of this approach is the `append` function, which joins (or appends) two lists into one larger list containing all the elements of the two input lists (in the correct order). Note that `cons` is not `append`. `cons` adds one element to the head of an existing list.
Thus

\[(\text{cons '}(a\ b)\ '',(c\ d)) \Rightarrow ((a\ b)\ c\ d)\]
\[(\text{append '}(a\ b)\ '',(c\ d)) \Rightarrow (a\ b\ c\ d)\]

The append function is predefined in Scheme, as are many other useful list-manipulating functions (consult the Scheme definition for what’s available).

It is instructive to define append directly to see its recursive approach:

\[
\text{(define}
 \text{(append L1 L2)}
 \text{(if (null? L1)}
 \text{L2}
 \text{(cons (car L1)}
 \text{(append (cdr L1) L2))}
 \text{)}
\text{)}
\]
Let's trace \((\text{append '}(a \ b) \ ' (c \ d))\)

Our definition is

\[
\begin{align*}
&\text{(define} \\
&\quad \text{(append L1 L2)} \\
&\quad \text{(if} \quad (\text{null? L1}) \\
&\quad\quad \text{L2} \\
&\quad\quad \quad \text{(cons} \quad (\text{car L1}) \\
&\quad\quad\quad\quad \text{(append} \quad (\text{cdr L1}) \quad \text{L2})) \\
&\quad\) \\
&\)
\end{align*}
\]

Now \(L1 = (a \ b)\) and \(L2 = (c \ d)\).

\((\text{null? L1})\) is false, so we evaluate

\[
\begin{align*}
&\text{(cons} \quad (\text{car L1}) \quad \text{(append} \quad (\text{cdr L1}) \quad \text{L2})) \\
&= \text{(cons} \quad (\text{car} \quad ' (a \ b)) \\
&\quad \quad \text{(append} \quad (\text{cdr} \quad ' (a \ b)) \quad ' (c \ d))) \\
&= \text{(cons} \quad 'a \quad \text{(append} \quad ' (b) \quad ' (c \ d))
\end{align*}
\]

We need to evaluate

\(\text{(append '}(b) \ ' (c \ d))\)

In this call, \(L1 = (b)\) and \(L2 = (c \ d)\).

\(L1\) is not null, so we evaluate

\[
\begin{align*}
&\text{(cons} \quad (\text{car L1}) \quad \text{(append} \quad (\text{cdr L1}) \quad \text{L2})) \\
&= \text{(cons} \quad (\text{car} \quad '(b)) \\
&\quad \quad \text{(append} \quad (\text{cdr} \quad '(b)) \quad '(c \ d)))
\end{align*}
\]
= (cons 'b (append '() '(c d))

We need to evaluate
(append '() '(c d))

In this call, L1 = () and L2 = (c d).
L1 is null, so we return (c d).

Therefore
(cons 'b (append '() '(c d)) =
(cons 'b '(c d)) = (b c d) =
(append '(b) '(c d))

Finally,
(append '(a b) '(c d)) =
(cons 'a (append '(b) '(c d)) =
(cons 'a '(b c d)) = (a b c d)

Note:

Source files for append, and other Scheme examples, may be found in
~cs538-1/public/scheme/example1.scm,
~cs538-1/public/scheme/example2.scm, etc.
Reversing a List

Another useful list-manipulation function is \texttt{rev}, which reverses the members of a list. That is, the last element becomes the first element, the next-to-last element becomes the second element, etc.

For example,

\[(\texttt{rev (1 2 3))} \Rightarrow (3 2 1)\]

The definition of \texttt{rev} is straightforward:

\[
\text{(define (rev L)}
\begin{align*}
&\quad \text{(if (null? L) } \\
&\qquad L) \\
&\quad \text{(append (rev (cdr L)) } \\
&\qquad \text{(list (car L)))}
\end{align*}
\]

\)
As an example, consider

\[(\text{rev} \ (1\ 2))\]

Here \(L = (1\ 2)\). \(L\) is not null so we evaluate

\[(\text{append} \ (\text{rev} \ (\text{cdr} \ L)) \\ (\text{list} \ (\text{car} \ L))) =\]

\[(\text{append} \ (\text{rev} \ (\text{cdr} \ '(1\ 2))) \\ (\text{list} \ (\text{car} \ '(1\ 2)))) =\]

\[(\text{append} \ (\text{rev} \ '(2)) \\ (\text{list} \ 1)) =\]

\[(\text{append} \ (\text{rev} \ '(2)) \ ' (1))\]

We must evaluate \((\text{rev} \ ' (2))\)

Here \(L = (2)\). \(L\) is not null so we evaluate

\[(\text{append} \ (\text{rev} \ (\text{cdr} \ L)) \\ (\text{list} \ (\text{car} \ L))) =\]

\[(\text{append} \ (\text{rev} \ (\text{cdr} \ '(2))) \\ (\text{list} \ (\text{car} \ '(2)))) =\]

\[(\text{append} \ (\text{rev} \ ()) \\ (\text{list} \ 2)) =\]

\[(\text{append} \ (\text{rev} \ ()) \ ' (2))\]

We must evaluate \((\text{rev} \ ' ())\)

Here \(L = ()\). \(L\) is null so \((\text{rev} \ ' ()) = (())\)
Thus \((\text{append } (\text{rev } ()') (2)) = (\text{append } ()' (2)) = (2) = (\text{rev } (2)) \)

Finally, recall \((\text{rev } (1 2)) = (\text{append } (\text{rev } (2))' (1)) = (\text{append } (2)' (1)) = (2 1) \)

As constructed, rev only reverses the “top level” elements of a list. That is, members of a list that themselves are lists aren’t reversed.

For example,
\[
(\text{rev } ((1 2) (3 4))) = ((3 4) (1 2))
\]

We can generalize rev to also reverse list members that happen to be lists.

To do this, it will be convenient to use Scheme’s \texttt{let} construct.
The Let Construct

Scheme allows us to create local names, bound to values, for use in an expression.

The structure is

\[
(\text{let } ((\text{id1 val1}) (\text{id2 val2}) \ldots) \text{ expr })
\]

In this construct, \(\text{val1}\) is evaluated and bound to \(\text{id1}\), which will exist only within this \textit{let} expression. If \(\text{id1}\) is already defined (as a global or parameter name) the existing definition is hidden and the local definition, bound to \(\text{val1}\), is used. Then \(\text{val2}\) is evaluated and bound to \(\text{id2}\), Finally, \(\text{expr}\) is evaluated in a scope that includes \(\text{id1}, \text{id2}, \ldots\).
For example,

\[
\begin{align*}
\text{(let } & \ ((a \ 10) \ (b \ 20)) \\
& \ (+ \ a \ b)) \Rightarrow 30
\end{align*}
\]

Using a \text{let}, the definition of \text{revall}, a version of \text{rev} that reverses all levels of a list, is easy:

\[
\begin{align*}
\text{(define } & \ (\text{revall } L) \\
& \ (\text{if } (\text{null? } L) \\
& \ \ \ \ L \\
& \ \ \ \ (\text{let } ((E \ (\text{if } (\text{list? } (\text{car } L)) \\
& \ \ \ \ \ \ \ \ (\text{revall } (\text{car } L)) \\
& \ \ \ \ \ \ \ \ (\text{car } L)))) \\
& \ \ \ \ (\text{append } (\text{revall } (\text{cdr } L)) \\
& \ \ \ \ \ \ \ \ (\text{list } E)) \\
& \ \) \\
& \) \\
\text{)} \\
\text{(revall } & \ '((1 \ 2) \ (3 \ 4))) \Rightarrow \\
\ & \ ((4 \ 3) \ (2 \ 1))
\end{align*}
\]
Subsets

Another good example of Scheme’s recursive style of programming is subset computation.

Given a list of distinct atoms, we want to compute a list of all subsets of the list values.

For example,

\[(\text{subsets } '(1 2 3)) \Rightarrow\]
\[
(() (1) (2) (3) (1 2) (1 3) (2 3) (1 2 3))
\]

The order of atoms and sublists is unimportant, but all possible subsets of the list values must be included.

Given Scheme’s recursive style of programming, we need a recursive definition of subsets.
That is, if we have a list of all subsets of \(n \) atoms, how do we extend this list to one containing all subsets of \(n+1 \) values?

First, we note that the number of subsets of \(n+1 \) values is exactly twice the number of subsets of \(n \) values.

For example,

\[
\text{(subsets '(1 2)) } \Rightarrow \\
(() (1) (2) (1 2)), \text{ which contains 4 subsets.}
\]

\[
\text{(subsets '(1 2 3)) contains 8 subsets (as we saw earlier).}
\]

Moreover, the extended list (of subsets for \(n+1 \) values) is simply the list of subsets for \(n \) values plus the result of “distributing” the new value into each of the original subsets.
Thus \((\text{subsets } '(1 2 3)) \Rightarrow\)
\((() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3)) =\)
\((() (1) (2) (1 2) \) \text{ plus} \)
\(((3) (1 3) (2 3) (1 2 3) \)

This insight leads to a concise program for subsets.

We will let \((\text{distrib } L E)\) be a function that “distributes” \(E\) into each list in \(L\).

For example,

\((\text{distrib } '(() (1) (2) (1 2)) 3) =\)
\(((3) (3 1) (3 2) (3 1 2))\)

\((\text{define } (\text{distrib } L E))\)
\((\text{if } (\text{null? } L)\)
\(\)\)
\((\text{cons } (\text{cons } E \text{ (car } L))\)
\((\text{distrib } \text{(cdr } L) \text{ E))\)
\)
We will let \((\text{extend } L \ E)\) extend a list \(L\) by distributing element \(E\) through \(L\) and then appending this result to \(L\).

For example,

\[
(\text{extend '(() (a)) 'b}) \Rightarrow \\
(() (a) (b) (b a))
\]

\[
\text{(define (extend L E)} \\
\quad (\text{append L (distrib L E))})
\]

\[
\text{Now subsets is easy:}
\]

\[
\text{(define (subsets L)} \\
\quad (\text{if (null? L)} \\
\quad \text{(list ()} \\
\quad \text{(extend (subsets (cdr L))} \\
\quad \text{(car L))})
\quad \text{)}
\quad \text{)}
\]