Datatypes may be Recursive

Recursive datatypes allow linked structures without explicit pointers.

datatype binTree =
 null
 | leaf
 | node of binTree * binTree;

fun size(null) = 0
 | size(leaf) = 1
 | size(node(t1,t2)) = size(t1)+size(t2) + 1

val size = fn : binTree -> int
Recursive Datatypes may be Polymorphic

```ml
datatype 'a binTree =
    null
| leaf of 'a
| node of 'a binTree * 'a binTree
```

```ml
fun frontier(null) = []
| frontier(leaf(v)) = [v]
| frontier(node(t1,t2)) =
    frontier(t1) @ frontier(t2)

val frontier =
    fn : 'a binTree -> 'a list
```
We can model n-ary trees by using lists of subtrees:

```ml
datatype 'a Tree =
  null |
  leaf of 'a |
  node of 'a Tree list;

fun frontier(null) = []
| frontier(leaf(v)) = [v]
| frontier(node(h::t)) =
    frontier(h) @
    frontier(node(t))
| frontier(node([])) = []

val frontier = fn :
  'a Tree -> 'a list
```
Abstract Data Types

ML also provides abstract data types in which the implementation of the type is hidden from users.

The general form is

abstype name = implementation
with
 val and fun definitions
end;

Users may access the name of the abstract type and the val and fun definitions that follow the with, but the implementation may be used only with the body of the abstype definition.
Example

abstype 'a stack =
 stk of 'a list

with

 val Null = stk([])
 fun empty(stk([])) = true
 | empty(stk(_.::_.)) = false
 fun top(stk(h::_.)) = h
 fun pop(stk(_.::t)) = stk(t)
 fun push(v, stk(L)) =
 stk(v::L)

end

type 'a stack
val Null = - : 'a stack
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop =
 fn : 'a stack -> 'a stack
val push = fn :
 'a * 'a stack -> 'a stack
Local value and function definitions, not to be exported to users of the type can be created using the local definition mechanism described earlier:

```plaintext
local
  val and fun definitions in exported definitions
end;
```
abstype 'a stack =
 stk of 'a list
with
 local
 fun size(stk(L)) = length(L);
in
 val Null = stk([])
 fun empty(s) =
 (size(s) = 0)
 fun top(stk(h::_)) = h
 fun pop(stk(_,::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)
end
end

type 'a stack
val Null = - : 'a stack
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop = fn :
 'a stack -> 'a stack
val push = fn :
 'a * 'a stack -> 'a stack
Why are abstract data types useful? Because they hide an implementation of a type from a user, allowing implementation changes without any impact on user programs.

Consider a simple implementation of queues:

```ocaml
abstype 'a queue =
  q of 'a list
with
  val Null = q([])
  fun front(q(h::_)) = h
  fun rm(q(_::t)) = q(t)
  fun enter(v,q(L)) =
    q(rev(v::rev(L)))
end

val Null = - : 'a queue
val front = fn : 'a queue -> 'a
```
val rm =
 fn : 'a queue -> 'a queue
val enter =
 fn : 'a * 'a queue -> 'a queue

This implementation of queues is valid, but somewhat inefficient. In particular to enter a new value onto the rear end of a queue, we do the following:

fun enter(v,q(L)) =
 q(rev(v::rev(L)))

 We reverse the list that implements the queue, add the new value to the head of the reversed queue then reverse the list a second time.
A more efficient (but less obvious) implementation of a queue is to store it as two lists. One list represents the “front” of the queue. It is from this list that we extract the front value, and from which we remove elements.

The other list represents the “back” of the queue (in reversed order). We add elements to the rear of the queue by adding elements to the front of the list. From time to time, when the front list becomes null, we “promote” the rear list into the front list (by reversing it). Now access to both the front and the back of the queue is fast and direct. The new implementation is:
abstype 'a queue =
 q of 'a list * 'a list

with

 val Null = q([],[])

 fun front(q(h::_,_)) = h
 | front(q([],L)) =
 front(q(rev(L),[]))

 fun rm(q(_,t,L)) = q(t,L)
 | rm(q([],L)) =
 rm(q(rev(L),[]))

 fun enter(v,q(L1,L2)) =
 q(L1,v::L2)

end

type 'a queue
val Null = - : 'a queue
val front = fn :
 'a queue -> 'a
val rm = fn :
 'a queue -> 'a queue
val enter = fn :
 'a * 'a queue -> 'a queue
From the user’s point of view, the two implementations are identical (they export exactly the same set of values and functions). Hence the new implementation can replace the old implementation without any impact at all to the user (except, of course, performance!).
Exception Handling

Our definitions of stacks and queues are incomplete. Reconsider our definition of stack:

```haskell
abstype 'a stack =
  stk of 'a list

with

  val Null = stk([])
  fun empty(stk([])) = true
  |   empty(stk(_::_)) = false
  fun top(stk(h::_)) = h
  fun pop(stk(_::t)) = stk(t)
  fun push(v, stk(L)) =
    stk(v::L)

end

What happens if we evaluate

top(Null);

We get a “match failure” because our definition of top is incomplete!
In ML we can raise an exception if an illegal or unexpected operation occurs. Asking for the top of an empty stack ought to raise an exception since the requested value does not exist.

ML contains a number of predefined exceptions, including:

Match Empty Div Overflow

(exception names by convention begin with a capital letter).

Predefined exceptions are raised by illegal values or operations. If they are not caught, the run-time system prints an error message.
fun f(1) = 2;
val f = fn : int -> int
f(2);
uncaught exception nonexhaustive
match failure
hd [];
uncaught exception Empty
1000000*1000000;
uncaught exception overflow
(1 div 0);
uncaught exception divide by zero
1.0/0.0;
val it = inf : real

(inf is the IEEE floating-point standard “infinity” value)
User Defined Exceptions

New exceptions may be defined as

exception name;

or

exception name of type;

For example

exception IsZero;

exception IsZero

exception NegValue of real;

exception NegValue of real
Exceptions May be Raised

The `raise` statement raises (throws) an exception:

`raise exceptionName;`

or

`raise exceptionName(expr);`

For example

```plaintext
fun divide(a,0) = raise IsZero |
 divide(a,b) = a div b;

val divide = fn : int * int -> int
divide(10,3);
val it = 3 : int
divide(10,0);
uncaught exception IsZero
```
val sqrt = Real.Math.sqrt;
val sqrt = fn : real -> real
fun sqroot(x) = 
  if x < 0.0 
  then raise NegValue(x) 
  else sqrt(x);
val sqroot = fn : real -> real
sqroot(2.0);
val it = 1.41421356237 : real
sqroot(~2.0);
uncaught exception NegValue
Exception Handlers

You may catch an exception by defining a handler for it:

\[(\text{expr}) \text{ handle } \text{exception1} \Rightarrow \text{val1} \]
\[|| \text{exception2} \Rightarrow \text{val2} \]
\[|| \ldots ;\]

For example,

\[(\sqrt \sim100.0)\]
\[\text{handle } \text{NegValue}(v) \Rightarrow \]
\[(\sqrt \sim v));\]

\[\text{val it} = 10.0 : \text{real}\]
Stacks Revisited

We can add an exception, `EmptyStk`, to our earlier stack type to handle `top` or `pop` operations on an empty stack:

```
abstype 'a stack = stk of 'a list

with

 val Null = stk([])

exception EmptyStk

fun empty(stk([])) = true
 | empty(stk(_::_)) = false

fun top(stk(h::_)) = h
 | top(stk([])) = raise EmptyStk

fun pop(stk(_::t)) = stk(t)
 | pop(stk([])) = raise EmptyStk

fun push(v, stk(L)) =
 stk(v::L)

end
```
type 'a stack
val Null = - : 'a stack
exception EmptyStk
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop = fn :
  'a stack -> 'a stack
val push = fn : 'a * 'a stack -> 'a stack

pop(Null);
uncaught exception EmptyStk
top(Null) handle EmptyStk => 0;
val it = 0 : int