
506CS 538  Spring 2006
©

Synchronization in Java
We often want threads to co-operate,
typically in how they access shared
data structures.
Since thread execution is
asynchronous, the details of how
threads interact can be unpredictable.
Consider a method
 update() {

   n = n+1;

   val = f(n);

}

that updates fields of an object.
If two or more threads execute
update  concurrently, we might get
unexpected or even illegal behavior.
(Why?)

507CS 538  Spring 2006
©

A Java method may be synchronized,
which guarantees that at most one
thread can execute the method at a
time. Other threads wishing access,
are forced to wait until the currently
executing thread completes.
Thus
void synchronized update() { ... }

can safely be used to update an
object, even if multiple threads are
active.
There is also a synchronized
statement in Java that forces threads
to execute a block of code
sequentially.
synchronized(obj) {

   obj.n = obj.n+1;

   obj.val = f(obj.n);

}

508CS 538  Spring 2006
©

Synchronization Primitives
The following operations are provided
to allow threads to safely interact:
wait() Sleep until awakened
wait(n) Sleep until awakened

or until n milliseconds
pass

notify() Wake up one sleeping
thread

notifyAll()   Wake up all sleeping
threads

Using these primitives, correct
concurrent access to a shared data
structure can be programed.

509CS 538  Spring 2006
©

Consider a Buffer  class in which
independent threads may try to store
or fetch data objects:

class Buffer {
  private Queue q;
  Buffer() { q = new Queue(); }
  public synchronized void
  put(Object obj) {
    q.enqueue(obj);
    notify(); //Why is this needed?
  }
  public synchronized Object
  get() {
    while (q.isEmpty()) {

//Why a while loop?
     wait();
    }
    return q.dequeue();
  }
}



510CS 538  Spring 2006
©

Locks, Semaphores and
Monitors

Java’s synchronization mechanisms
are based upon the notion of a lock. A
lock is a special value that can be
held by at most one thread.
If a thread holds a lock, it has
permission to do some “critical”
operation like writing a shared
variable or restructuring a shared
data object.
If a thread wants to do an operation
but doesn’t hold the necessary lock, it
must wait until it gets the lock.
In Java there is a lock associated with
each run-time object.

511CS 538  Spring 2006
©

Lock Granularity and Access
Though each Java object has a lock,
you often don’t want to lock and
unlock each object you access.
If you are manipulating a large data
structure (like a tree or hash table),
acquiring the lock for each object in
the tree or table can be costly and
error-prone.
Instead, it is common to create a lock
corresponding to a group of objects.
Hence holding the lock to the root of
a tree may give you permission to
access the whole tree.
There is a danger though—if all or
most of a large structure is held by
one thread, then other threads won’t
be able to access that structure
concurrently.

512CS 538  Spring 2006
©

For example, a large shared data base
(like one used to record current
bookings for an airline) shouldn’t be
held exclusively by one thread—
hundreds of concurrent threads may
want to access it at any time. An
intermediate lock, like all reservations
for a single fight, is more reasonable.
There is also an issue of how long you
hold a lock. The ideal is to have
exclusive access for as short a period
as is necessary. Work that is not
subject to interference by other
threads (like computations using local
variables) should be done before a
lock is obtained. Hence Java’s
synchronized  statement allows a
method to get exclusive access to an
object for a limited region, enhancing
shared access.

513CS 538  Spring 2006
©

Deadlock
A variety of programming problems
appear in concurrent programs that
don’t exist in ordinary sequential
programs.
The most serious of these is deadlock:
Two or more threads hold locks that
other threads require. Each waits for
the other thread to release a needed
lock, and no thread is able to execute.
As an example of how deadlock may
occur, consider two threads, t1  and
t2 . Each requires two files, a master
file and a log file. Since these files are
shared, each has a lock.
Assume t1  gets the lock for the
master file while t2  (at the same
instant) gets the lock for the log file.



514CS 538  Spring 2006
©

Now each is stuck. Each has one file,
and will wait forever for the other file
to be released.
In Java deadlock avoidance is wholly
up to the programmer. There are no
language-level guarantees that
deadlock can’t happen.
Some languages have experimented
with ways to help programmers avoid
deadlock:
•  If all locks must be claimed at once,

deadlock can be avoided. You either
get all of them or none, but you can’t
block other threads while making no
progress yourself.

•  Locks (and the resources they
control) can be ordered, with the rule
that you must acquire locks in the

515CS 538  Spring 2006
©

proper order. Now two threads can’t
each hold locks the other needs.

•  The language can require that the
largest set of locks ever needed be
declared in advance. When locks are
requested, the operating system can
track what’s claimed and what may
be needed, and refuse to honor
unsafe requests.

516CS 538  Spring 2006
©

Fairness & Starvation
When one thread has a lock, other
threads who want the lock will be
suspended until the lock is released.
It can happen that a waiting thread
may be forced to wait indefinitely to
acquire a lock, due to an unfair
waiting policy. A waiting thread that
never gets a lock it needs due to
unfair lock allocation faces starvation.
As an example, if we place waiting
threads on a stack, newly arrived
threads will get access to a lock
before earlier arrivals. This can lead to
starvation. Most thread managers try
to be fair and guarantee that all
waiting threads have a fair chance to
acquire a lock.

517CS 538  Spring 2006
©

How are Locks Implemented?
Internally, Java needs operations to
acquire a lock and release a lock.
These operations can be implemented
using the notion of a semaphore.
A semaphore is an integer value
(often just a single bit) with two
atomic operations: up and down.
up(s)  increments s atomically.
down(s)  decrements s atomically.
But if s is already zero, the process
doing the down operation is put in a
wait state until s becomes positive
(eventually some other process should
do an up operation).
Now locks are easy to implement.
You do a down(lock) to claim a lock.
If someone else has it, you are forced



518CS 538  Spring 2006
©

to wait until the lock is released. If
the lock value is > 0 you get it and all
others are “locked out.”
When you want to release a lock, you
do up(lock) , which makes lock
non-zero and eligible for another
thread to claim.
In fact, since only one thread will ever
have a lock, the lock value needs to
be only one bit, with 1 meaning
currently free and unlocked and 0
meaning currently claimed and
locked.

519CS 538  Spring 2006
©

Monitors
Direct manipulation of semaphores is
tedious and error-prone. If you
acquire a lock but forget to release it,
threads may be blocked forever.
Depending on where down and up
operations are placed, it may be
difficult to understand how
synchronization is being performed.
Few modern languages allow direct
use of semaphores. Instead,
semaphores are used in the
implementation of higher-level
constructs like monitors.
A monitor is a language construct
that guarantees that a block of code
will be executed synchronously (one
thread at a time).

520CS 538  Spring 2006
©

The Java synchronized statement is
a form of monitor.
When
synchronized(obj) { ... }

is executed, “invisible” getLock  and
freeLock  operations are added:
synchronized(obj) {
 getLock(obj)

 ...

 freeLock(obj);

}

This allows the body of the
synchronized  statement to execute
only when it has the lock for obj .
Thus two different threads can never
simultaneously execute the body of a
synchronized  statement because
two threads can’t simultaneously hold
obj ’s lock.

521CS 538  Spring 2006
©

In fact, synchronized methods are
really just methods whose bodies are
enclosed in an invisible
synchronized  statement.
If we execute
 obj.method()

where method  is synchronized,
method ’s body is executed as if it
were of the form
synchronized(obj) {

  body of method

}

Operations like sleep , wait , notify
and notifyAll  also implicitly cause
threads to release locks, allowing
other threads to proceed.



522CS 538  Spring 2006
©

Reading Assignment
• A Comparative Overview of C#

(linked from class web page)

523CS 538  Spring 2006
©

Java 1.5 (Tiger Java)
Recently, Java has been extended to
include a variety of improvements,
many drawn from functional
languages.
Added features include:
•  Parametric polymorphism.

Classes and interfaces may be
parameterized using a type parameter.
class List<T> {

  T  head;

  List<T> tail;

}

Interfaces may also be parameterized.

•  Enhanced loop iterators.
for (v : myArray) {

// each element of myArray
  // appears as a value of v  }

524CS 538  Spring 2006
©

•  Automatic boxing and unboxing of
wrapper classes.

Conversion from int  to Integer  or
Integer  to int  is now automatic.

•  Typesafe enumerations.
public enum Color {RED, BLUE, GREEN};

•  Static imports.
You may import all static members of a
class and use them without
qualification. Thus you may now write
out.println  rather than
System.out.println .

•  Variable argument methods.

•  Formatted output using printf :
out.printf("Ans = %3d",a+b);

525CS 538  Spring 2006
©

C#
C# is Microsoft’s answer to Java. In
most ways it is very similar to Java,
with some C++ concepts reintroduced
and some useful new features.
Similarities to Java include:
•  C# is object-based, with all objected

descended from class Object .

• Objects are created from classes using
new. All objects are heap-allocated
and garbage collection is provided.

•  All code is placed within methods
which must be defined within classes.

•  Almost all Java reserved words have
C# equivalents (many are identical).

•  Classes have single inheritance.



526CS 538  Spring 2006
©

•  C# generates code for a virtual
machine to support cross-platform
execution.

•  Interfaces are provided to capture
functionality common to many
classes.

• Exceptions are very similar in form to
Java’s.

•  Instance and static data within an
object must be initialized at point of
creation.

527CS 538  Spring 2006
©

C# Improves Upon Some Java
Features

•  Operators as well as methods can be
overloaded:

  class Point {
    int x, y;
    static Point operator + (
     Point p1, Point p2) {
     return new Point(p1.x+p2.x,

p1.y+p2.y);
    }
  }

• Switch statements may be indexed by
string literals.

•  In a switch, fall throughs to the next
case are disallowed (if non-empty).

•  Goto’s are allowed.

•  Virtual methods must be marked.

528CS 538  Spring 2006
©

• Persistent objects (that may be stored
across executions) are available.

529CS 538  Spring 2006
©

C# Adds Useful Features
• Events and delegates are included to

handle asynchronous actions (like
keyboard or mouse actions).

• Properties allow user-defined read
and write actions for fields. You can
add get  and set  methods to the
definition of a field. For example,

class Customer {

  private string name;

  public string Name {

  get { return name; }}

}

Customer c; ...

string s = c.Name;



530CS 538  Spring 2006
©

• Indexers allow objects other than
arrays to be indexed. The [] operator
is overloadable. This allows you to
define the meaning of
obj[123]  or obj["abc"]
within any class definition.

•  Collection classes may be directly
enumerated:
foreach (int i in array)  ...

• Fields, methods and constructors may
be defined within a struct as well as a
class. Structs are allocated within the
stack instead of the heap, and are
passed by value. For example:

struct Point {

   int x,y;

   void reset () {

     x=0; y=0; }

 }

531CS 538  Spring 2006
©

• When an object is needed, a primitive
(int , char , etc.) or a struct will be
automatically boxed or unboxed
without explicit use of a wrapper
class (like Integer  or Character ).
Thus if method List.add expects an
object, you may write

List.add(123);
and 123  will be boxed into an
Integer  object automatically.

• Enumerations are provided:
enum Color {Red, Blue, Green};

• Rectangular arrays are provided:
int [,] multi = new int[5,5];

•  Reference, out and variable-length
parameter lists are allowed.

•  Pointers may be used in methods
marked unsafe .


