1. A widely-used data structure is the **priority queue**. A priority queue is an ordinary queue extended with an integer priority. When data values are added to a queue, the priority controls where the value is added. A value added with priority \(p \) is placed behind all entries with a priority \(\leq p \) and in front of all entries with a priority \(> p \). Note that if all entries in a priority queue are given the same priority, then a priority queue acts like an ordinary queue in that new entries are placed behind current entries.

You are to write an SML abstract data type (an `abstype`) that implements a polymorphic priority queue, defined as `'a PriorityQ`. You may implement your priority queue using any reasonable SML data structure (a list of tuples might be a reasonable choice). The following values, functions, and exceptions should be implemented:

- **exception emptyQueue**
 This exception is raised when `front` or `remove` is applied to an empty queue.

- **nullQueue**
 This value represent the null priority queue, which contains no entries.

- **enter(pri,v,pQueue)**
 This function adds an entry with value \(v \) and priority \(\text{pri} \) to \(\text{pQueue} \). The updated priority queue is returned. As noted above, the entry is placed behind all entries with a priority \(\leq \text{pri} \) and in front of all entries with a priority \(\geq \text{pri} \).

- **front(pQueue)**
 This function returns the front value in \(\text{pQueue} \), which is the value with the lowest priority. If more than one entry has the lowest priority, the oldest entry is chosen. If \(\text{pQueue} \) is empty, the `emptyQueue` exception is raised.

- **remove(pQueue)**
 This function removes the front value from \(\text{pQueue} \), which is the value with the lowest priority. If more than one entry has the lowest priority, the oldest entry is removed. The updated priority queue is returned. If \(\text{pQueue} \) is empty, the `emptyQueue` exception is raised.

- **contents(pQueue)**
 This function returns the contents of \(\text{pQueue} \) in list form. Each member of the list is itself a list comprising all queue members sharing the same priority. Sublists are ordered by priority, with lowest priority first. Within a sublist, queue members are ordered by order of entry, with oldest first. The front of \(\text{pQueue} \) is the leftmost element of the first sublist, and the rear of \(\text{pQueue} \) is the rightmost member of the last sublist.
2. (a) Assume we have a list \(L \) of integers. Define a function \(\text{unitLists}(L) \) that places each integer in \(L \) into its own sublist (of size one). That is, if \(L \) has \(n \) integers in it, \(\text{unitLists} \) produces a list of \(n \) sublists, each containing a single integer from \(L \). For example,

\[
\text{unitLists([])} \Rightarrow [] \\
\text{unitLists([1,2,3,4])} \Rightarrow [[1],[2],[3],[4]]
\]

(b) Each of the sublists produced by \(\text{unitLists} \) is trivially sorted. If we merge the first two sublists together into sorted order, we have a sorted sublist of size 2. If we then merge the third and fourth sublists, then the fifth and sixth sublists, etc., we end up with \(n/2 \) sorted sublists of size 2, rather than \(n \) sublists of size 1 (the final sublist may be of size 1 if it has no partner to pair with). If we iterate this merging process, we next get \(n/4 \) sorted sublists of size 4, then \(n/8 \) sorted sublists of size 8, etc. Finally, we produce a single sorted sublist of size \(n \). This sorting logic is the basis of a **merge sort**. Write an SML function \(\text{mergeSort}(L) \) that first divides \(L \) into unit sublists using \(\text{unitLists} \), and then repeatedly merges adjacent sublists until a single sorted list is produced. You may create and use any additional functions you find useful or necessary.

(c) Once a list is sorted, it easy to test for duplicates—just compare adjacent values. But testing for duplicates after the sort is finished is somewhat inefficient. If a duplicate appears in \(L \) it can readily be detected when values from sublists are merged.

Create a function \(\text{mergeSort2}(L) \) that makes duplicate checking **integral** to the merge component of the sort. The type of \(\text{mergeSort2} \) should be \(\text{int list option} \). When a duplicate is seen, \(\text{NONE} \) should be immediately returned (as an error indication), without any further processing of \(L \). If no duplicates are found, the sorted values of \(L \) are to be returned (using the \(\text{SOME} \) constructor). Use SML’s exception mechanism to force a return when you see a duplicate value.

3. (a) Write an SML function that computes the following recursive function:

\[
f(0) = 1 \\
f(-1) = 0 \\
f(-2) = 0 \\
f(-3) = 0 \\
f(m) = f(m-1) + f(m-2) + f(m-3) - f(m-4) \text{ for } m \geq 1
\]

(Be sure to remember that in SML \(\sim \) is unary minus and \(-\) is binary minus.)

What are the values of \(f(27) \), \(f(28) \), \(f(29) \), and \(f(30) \)? How long does it take to compute each of these values?

To start a “CPU timer” in SML use

\[
\text{val t = Timer.startCPUTimer();}
\]

To determine how much CPU time (in seconds) has elapsed since timer \(t \) was created use

\[
\text{Time.toReal(#usr(Timer.checkCPUTimer(t))});
\]

Estimate how long \(f(34) \) will take to compute (using your timings for \(f(27) \), \(f(28) \), \(f(29) \), and \(f(30) \)).
(b) In a functional language like SML without side-effects or assignments, the value of a function always depends solely on its arguments. This allows us to use an optimization called **memoizing**. This optimization operates as follows: When a function is called, its arguments and result value are recorded. If the function is ever called again with the same arguments, the stored result is looked up and returned immediately.

Write an SML function `fastF(m)` that is a solution to part (a) using memoizing. What is the value of `fastF(34)`? How long does it take to compute?

4. (a) Recall that a **lazy list** is a useful structure for representing a long or even infinite list. In SML a lazy list can be defined as

```ml
datatype 'a lazyList =
    nullList | cons of 'a * (unit -> 'a lazyList)
```

This definition says that lazy lists are polymorphic, having a type of `'a`. A value of a lazy list is either `nullList` or a `cons` value consisting of the head of the list and a function of zero arguments that, when called, will return a lazy list representing the rest of the list.

Write the following SML functions that create and manipulate lazy lists:

- **seq(first, last)**
 This function takes two integers and returns an integer lazy list containing the sequence of values `first, first+1, ..., last`

- **infSeq(first)**
 This function takes an integer and returns an integer lazy list containing the infinite sequence of values `first, first+1, ...`

- **firstN lazyListVal n**
 This function is in curried form; it takes a `lazyList` and an integer and returns an ordinary SML list containing the first `n` values in the `lazyList`. If the `lazyList` contains fewer than `n` values, then all the values in the `lazyList` are returned.

- **Nth lazyListVal n**
 This function is in curried form; it takes a `lazyList` and an integer and returns an option representing the `n`-th value in the `lazyList` (counting from 1). If the `lazyList` contains fewer than `n` values, then `NONE` is returned. (Recall that `'a option = SOME of 'a | NONE`).

(b) It is useful to remove unwanted values from a list using a **filter**. A filter, denoted as `filter(controlList, dataList)`, uses a boolean valued control list to select values from a data list; `true` signals that the corresponding data list value is to be kept; `false` signals that the corresponding data list value is to be deleted.

For example, `filter([true, false, false, true], [1,2,3,4]) = [1,4]`. You are to program an SML version of `filter` that uses a lazy boolean list
to filter a lazy data list; the result is a lazy list containing only data list values corresponding to true values in the control list.

(c) A wide variety of techniques have been devised to compute prime numbers (numbers evenly divisible only by themselves and one). One of the oldest techniques is the “Sieve of Eratosthenes.” This technique is remarkably simple.

You start with the infinite list \(L = 2, 3, 4, 5, \ldots \). The head of this list (2) is a prime. If you filter out all values that are a multiple of 2, you get the list 3, 5, 7, 9, \ldots. The head of this list (3) is a prime. Moreover, if you filter out all values that are a multiple of 3, you get the list 5, 7, 11, 13, 17, \ldots, whose head (5) is prime. Iterating the process, you repeatedly take the head of the resulting list as the next prime, and then filter from this list all multiples of the head value.

You are to write a SML function \texttt{primes()} that computes a lazyList containing all prime numbers, starting at 2, using the “Sieve of Eratosthenes.” To test your function, evaluate (firstN primes() 10). You should get \([2, 3, 5, 7, 11, 13, 17, 19, 23, 29]\). Try (Nth primes() 20). You should get \texttt{SOME(71)}. (This computation may take a few seconds, and do several garbage collections, as there is a lot of recursion going on.)