val x = (1,2);
val x = (1,2) : int * int
val (h,t) = x;
val h = 1 : int
val t = 2 : int
val L = [1,2,3];
val L = [1,2,3] : int list
val [v1,v2,v3] = L;
val v1 = 1 : int
val v2 = 2 : int
val v3 = 3 : int
val [1,x,3] = L;
val x = 2 : int
val [1,rest] = L;
(* This is illegal. Why? *)
val yy::rest = L;
val yy = 1 : int
val rest = [2,3] : int list

Wildcards

An underscore (_), may be used as a “wildcard” or “don’t care” symbol. It matches part of a structure without defining a new binding.

val zz::_ = L;
val zz = 1 : int

Pattern matching works in records too.

val r = {a=1,b=2};
val r = {a=1,b=2} :
 {a:int, b:int}
val {a=v1,b=v2} = r;
val v1 = 1 : int
val v2 = 2 : int
val v3 = 3 : int
val [1,x,3] = L;
val x = 2 : int
val [1,rest] = L;

Patterns can be nested too.

val x = ((1,3.0),5);
val x = ((1,3.0),5) :
 (int * real) * int
val ((1,y),_)=x;
val y = 3.0 : real

Functions

Functions take a single argument (which can be a tuple).
Function calls are of the form
function_name argument;

For example
size "xyz";
cos 3.14159;
The more conventional form
(size "xyz") ; Or cos(3.14159);
is OK (the parentheses around the argument are allowed, but unnecessary).
The form (size "xyz") or
(cos 3.14159) is OK too.
Note that the call
\texttt{plus(1,2);}
passes \textit{one} argument, the tuple (1,2) to \texttt{plus}.
The call \texttt{dummy();}
passes \textit{one} argument, the unit value, to \texttt{dummy}.
All parameters are passed by value.

\section*{Function Types}

The type of a function in ML is denoted as \texttt{T1->T2}. This says that
a parameter of type \texttt{T1} is mapped to a result of type \texttt{T2}.
The symbol \texttt{fn} denotes a value that is a function.
Thus
\begin{verbatim}
size;
val it = fn : string -> int
\end{verbatim}
\begin{verbatim}
not;
val it = fn : bool -> bool
\end{verbatim}
\begin{verbatim}
Math.cos;
val it = fn : real -> real
\end{verbatim}
(Math is an ML \texttt{structure}—an external library member that contains separately compiled definitions).

\section*{User-Defined Functions}

The general form is
\begin{verbatim}
fun name arg = expression;
\end{verbatim}
ML answers back with the name defined, the fact that it is a function (the \texttt{fn} symbol) and its inferred type.
For example,
\begin{verbatim}
fun twice x = 2*x;
val twice = fn : int -> int
fun twotimes(x) = 2*x;
val twotimes = fn : int -> int
fun fact n =
 if n=0
 then 1
 else n*fact(n-1);
val fact = fn : int -> int
\end{verbatim}

fun \texttt{plus(x,y):int = x+y;}
val plus = fn : int * int -> int
The \texttt{:int} suffix is a \textit{type constraint}.
It is needed to help ML decide that + is integer plus rather than real plus.
Patterns In Function Definitions

The following defines a predicate that tests whether a list, \(L \) is null (the predefined null function already does this).

```haskell
fun isNull L =  
  if L=[] then true else  
  false;
val isNull = fn : 'a list -> bool
```

However, we can decompose the definition using *patterns* to get a simpler and more elegant definition:

```haskell
fun isNull [] = true  
  | isNull(_::_) = false;
val isNull = fn : 'a list -> bool
```

The "|" divides the function definition into different argument patterns; no explicit conditional logic is needed. The definition that matches a particular actual parameter is automatically selected.

```haskell
fun fact(1) = 1  
  | fact(n) = n*fact(n-1);
val fact = fn : int -> int
```

If patterns that cover all possible arguments aren't specified, you may get a run-time `Match` exception.

If patterns overlap you may get a warning from the compiler.

```haskell
fun append([],L) = L  
  | append(hd::tl,L) = hd::append(tl,L);
val append = fn : 'a list * 'a list -> 'a list
```

But a more precise decomposition is fine:

```haskell
fun append([],L) = L  
  | append(hd::tl,L) = hd::append(tl,L)  
  | append(L,[]) = L;
val append = fn : 'a list * 'a list -> 'a list
```

If we add the pattern

```haskell
append(L,[]) = L
```

we get a redundant pattern warning (Why?)

```haskell
fun append([],L) = L  
  | append(hd::tl,L) = hd::append(tl,L)  
  | append(L,[]) = L;
stdIn:151.1-153.20 Error: match redundant  
  (nil,L) => ...  
  (hd :: tl,L) => ...  
  --> (L,nil) => ...
```
Function Types Can be Polytypes

Recall that 'a, 'b, ... represent type variables. That is, any valid type may be substituted for them when checking type correctness.

ML said the type of append is

```ml
val append = fn : 'a list * 'a list -> 'a list
```

Why does 'a appear three times?

We can define eitherNull, a predicate that determines whether either of two lists is null as

```ml
fun eitherNull(L1,L2) =
    null(L1) orelse null(L2);
val eitherNull =
    fn : 'a list * 'b list -> bool
```

Why are both 'a and 'b used in eitherNull's type?

Currying

ML chooses the most general (least-restrictive) type possible for user-defined functions.

Functions are first-class objects, as in Scheme.

The function definition

```ml
fun f x y = expression;
```

defines a function f (of x) that returns a function (of y).

Reducing multiple argument functions to a sequence of one argument functions is called currying (after Haskell Curry, a mathematician who popularized the approach).

Thus

```ml
fun f x y = x :: [y];
val f = fn : 'a -> 'a -> 'a list
```

says that f takes a parameter x, of type 'a, and returns a function (of y, whose type is 'a) that returns a list of 'a.

Contrast this with the more conventional

```ml
fun g(x,y) = x :: [y];
val g = fn : 'a list * 'a -> 'a list
```

Here g takes a pair of arguments (each of type 'a) and returns a value of type 'a list.

The advantage of currying is that we can bind one argument and leave the remaining argument(s) free.

For example

```ml
f(1);
```

is a legal call. It returns a function of type

```ml
fn : int -> int list
```

The function returned is equivalent to

```ml
fun h b = 1 :: [b];
val h = fn : int -> int list
```
Map Revisited

ML supports the `map` function, which can be defined as

```ml
fun map (f, []) = []
| map (f, x::y) =
  (f x) :: map (f, y);
val map = fn : ('a -> 'b) * 'a list -> 'b list
```

This type says that `map` takes a pair of arguments. One is a function from type `'a` to type `'b`. The second argument is a list of type `'a`. The result is a list of type `'b`.

In curried form `map` is defined as

```ml
fun map f [] = []
| map f (x::y) =
  (f x) :: map f y;
val map = fn : ('a -> 'b) -> 'a list -> 'b list
```

This type says that `map` takes one argument that is a function from type `'a` to type `'b`. It returns a function that takes an argument that is a list of type `'a` and returns a list of type `'b`.

The advantage of the curried form of `map` is that we can now use `map` to create “specialized” functions in which the function that is mapped is fixed.

For example,

```ml
val neg = map not;
val neg = fn : bool list -> bool list
neg [true,false,true];
val it = [false,true,false] : bool list
```

Power Sets Revisited

Let’s compute power sets in ML.

We want a function `pow` that takes a list of values, viewed as a set, and which returns a list of lists. Each sublist will be one of the possible subsets of the original argument.

For example,

```ml
pow [1,2] = [[1,2],[1],[2],[[]]]
```

We first define a version of `cons` in curried form:

```ml
fun cons h t = h::t;
val cons = fn : 'a -> 'a list -> 'a list
```

Now we define `pow`. We define the powerset of the empty list, `[]`, to be `[][]`. That is, the power set of the empty set is set that contains only the empty set.

For a non-empty list, consisting of `h::t`, we compute the power set of `t`, which we call `pset`. Then the power set for `h::t` is just `h` distributed through `pset` appended to `pset`.

We distribute `h` through `pset` very elegantly: we just map the function `(cons h)` to `pset`. `(cons h)` adds `h` to the head of any list it is given. Thus mapping `(cons h)` to `pset` adds `h` to all lists in `pset`.
The complete definition is simply

```plaintext
fun pow [] = [[]]
| pow (h::t) = 
  let
    val pset = pow t
  in
    (map (cons h) pset) @ pset
  end;
val pow = fn : 'a list -> 'a list list
```

Let’s trace the computation of `pow [1,2]`.

Here \(h = 1 \) and \(t = [2] \). We need to compute `pow [2]`.

Now \(h = 2 \) and \(t = [] \).

We know `pow [] = [[]]`, so `pow [2] = (map (cons 2) [[]])@[] = [[2]]@[] = [[2],[[]]]`

Therefore `pow [1,2] = (map (cons 1) [[2],[[]]]) @[[2],[[]]] = [[1,2],[1],[2],[[]]]`