Function Types Can be Polytypes

Recall that 'a, 'b, ... represent type variables. That is, any valid type may be substituted for them when checking type correctness.

ML said the type of append is

```ml
val append = fn :
  'a list * 'a list -> 'a list
```

Why does 'a appear three times?

We can define eitherNull, a predicate that determines whether either of two lists is null as

```ml
fun eitherNull(L1,L2) =
  null(L1) orelse null(L2);
val eitherNull =
  fn : 'a list * 'b list -> bool
```

Why are both 'a and 'b used in eitherNull's type?

Currying

ML chooses the most general (least-restrictive) type possible for user-defined functions.

Functions are first-class objects, as in Scheme.

The function definition

```ml
fun f x y = expression;
val f = fn : 'a list * 'a list -> 'a list
```

For example

```ml
f(1);
```

is a legal call. It returns a function of type

```ml
fn : int -> int list
```

The function returned is equivalent to

```ml
fun h b = l :: [b];
val h = fn : int -> int list
```

Thus

```ml
fun f x y = x :: [y];
val f = fn : 'a -> 'a -> 'a list
```

says that f takes a parameter x, of type 'a, and returns a function (of y, whose type is 'a) that returns a list of 'a.

Contrast this with the more conventional

```ml
fun g(x,y) = x :: [y];
val g = fn : 'a * 'a -> 'a list
```

Here g takes a pair of arguments (each of type 'a) and returns a value of type 'a list.

The advantage of currying is that we can bind one argument and leave the remaining argument(s) free.
Map Revisited

ML supports the map function, which can be defined as

```ml
fun map (f, []) = []
| map (f, x::y) =
  (f x) :: map (f, y);

val map = fn : ('a -> 'b) * 'a list -> 'b list
```

This type says that map takes a pair of arguments. One is a function from type 'a to type 'b. The second argument is a list of type 'a. The result is a list of type 'b.

In curried form map is defined as

```ml
fun map f [] = []
| map f (x::y) =
  (f x) :: map f y;

val map = fn : ('a -> 'b) -> 'a list -> 'b list
```

The advantage of the curried form of map is that we can now use map to create "specialized" functions in which the function that is mapped is fixed.

For example,

```ml
val neg = map not;

val neg = fn : bool list -> bool list
  neg [true,false,true];

val it = [false,true,false] : bool list
```

Power Sets Revisited

Let's compute power sets in ML.

We want a function pow that takes a list of values, viewed as a set, and which returns a list of lists. Each sublist will be one of the possible subsets of the original argument.

For example,

```ml
pow [1,2] = [[1,2], [1], [2], []]
```

We first define a version of cons in curried form:

```ml
fun cons h t = h::t;
val cons = fn : 'a -> 'a list -> 'a list
```

Now we define pow. We define the powerset of the empty list, [], to be [[]]. That is, the power set of the empty set is set that contains only the empty set.

For a non-empty list, consisting of h::t, we compute the power set of t, which we call pset. Then the power set for h::t is just h distributed through pset appended to pset.

We distribute h through pset very elegantly: we just map the function (cons h) to pset. (cons h) adds h to the head of any list it is given. Thus mapping (cons h) to pset adds h to all lists in pset.
The complete definition is simply

```sml
fun pow [] = [[]]
| pow (h::t) =
  let
   val pset = pow t
  in
   (map (cons h) pset) @ pset
  end;
val pow =
  fn : 'a list -> 'a list list
```

Let's trace the computation of `pow [1,2]`.
Now `h = 2` and `t = []`.
We know `pow [] = [[]]`, so `pow [2] = (map (cons 2) [[]])@ [[]] = ([[2]])@ [[]] = [[2], []]`

Therefore `pow [1,2] = (map (cons 1) [[2], []]) @ [[2], []] = [[1,2], [1]]@[2], []] = [[1,2], [1], [2], []]`

Composing Functions

We can define a composition function that composes two functions into one:

```sml
fun comp (f,g)(x) = f(g(x));
val comp = fn :
  ('a -> 'b) * ('c -> 'a) -> 'c -> 'b
```

In curried form we have

```sml
fun comp f g x = f(g(x));
val comp = fn :
  ('a -> 'b) -> ('c -> 'a) -> 'c -> 'b
```

For example,

```sml
fun sqr x:int = x*x;
val sqr = fn : int -> int
comp sqr sqr;
val it = fn : int -> int
comp sqr sqr 3;
val it = 81 : int
```

In SML `o` (lower-case O) is the infix composition operator.
Hence

```
sqr o sqr ≡ comp sqr sqr
```
Lambda Terms
ML needs a notation to write down unnamed (anonymous) functions, similar to the lambda expressions Scheme uses.
That notation is
\(\text{fn arg } \to \text{ body} \);
For example,
\[
\text{val sqr = fn x:int } \to \text{ x*x;}
\]

In fact the notation used to define functions,
\(\text{fun name arg } = \text{ body;}
\)
is actually just an abbreviation for the more verbose
\[
\text{val name = fn arg } \to \text{ body;}
\]
An anonymous function can be used wherever a function value is needed.
For example,
\[
\text{map (fn x } \to \text{ [x]) } [1,2,3];
\]
\[
\text{val it } = \text{ [[1],[2],[3]] : int list list}
\]
We can use patterns too:
\[
\text{(fn } [] \Rightarrow []
\]
\[
| (h::t) \Rightarrow h::h::t);
\]
\[
\text{val it } = \text{ fn : 'a list } \Rightarrow 'a list
\]
(What does this function do?)

Polymorphism vs. Overloading
ML supports polymorphism.
A function may accept a polytype (a set of types) rather than a single fixed type.
In all cases, the same function definition is used. Details of the supplied type are irrelevant and may be ignored.
For example,
\[
\text{fun id } x = x;
\]
\[
\text{val id = fn : 'a } \Rightarrow 'a
\]
\[
\text{fun toList } x = [x];
\]
\[
\text{val toList = fn : 'a } \Rightarrow 'a list
\]
Overloading, as in C++ and Java, allows alternative definitions of the same method or operator, with selection based on type.
Thus in Java + may represent integer addition, floating point addition or string concatenation, even though these are really rather different operations.
In ML +, -, *, and = are overloaded.
When = is used (to test equality), ML deduces that an equality type is required. (Most, but not all, types can be compared for equality).
When ML decides an equality type is needed, it uses a type variable that begins with two tics rather than one.
\[
\text{fun eq(x,y) } = (x=y);
\]
\[
\text{val eq = fn : 'a } * 'a \Rightarrow \text{ bool}
\]
Defining New Types in ML

We can create new names for existing types (type abbreviations) using

type id = def;

For example,

type triple = int*real*string;
type rec1 = {a:int,b:real,c:string};
type 'a triple3 = 'a*'a*'a;
type intTriple = int triple3;

These type definitions are essentially macro-like name substitutions.

The Datatype Mechanism

The *datatype* mechanism specifies new data types using value constructors. For example,

datatype color = red|blue|green;

datatype color = blue | green | red

Pattern matching works too using the type’s constructors:

fun translate red = "rot" | translate blue = "blau" | translate green = "gruen";

val translate = fn : color -> string

fun jumble red = blue | jumble blue = green | jumble green = red;

val jumble = fn : color -> color

translate (jumble green);

val it = "rot" : string

SML Examples

Source code for most of the SML examples presented here may be found in

~cs538-1/public/sml/class.sml

Parameterized Constructors

The constructors used to define data types may be parameterized:

datatype money =
 none |
 coin of int |
 bill of int |
 iou of real * string;

datatype money =
 bill of int |
 coin of int |
 iou of real * string |
 none

Now expressions like coin(25) or bill(5) or iou(10.25, "Lisa") represent valid values of type money.
We can also define values and functions of type `money`:

```plaintext
val dime = coin(10);
val dime = coin 10 : money
val deadbeat =
iou(25.00,"Homer Simpson");
val deadbeat =
iou (25.0,"Homer Simpson") : money
fun amount(none) = 0.0
  | amount(coin(cents)) = real(cents)/100.0
  | amount(bill(dollars)) = real(dollars)
  | amount(iou(amt, _)) = 0.5*amt;
val amount = fn : money -> real
```