
437CS 538 Spring 2007©

A Bubble Sort
Perhaps the best known sorting
technique is the interchange or
“bubble” sort. The idea is simple.
We examine a list of values,
looking for a pair of adjacent
values that are “out of order.” If
we find such a pair, we swap the
two values (placing them in
correct order). Otherwise, the
whole list must be in sorted order
and we are done.
In conventional languages we
need a lot of code to search for
out-of-order pairs, and to
systematically reorder them. In
Prolog, the whole sort may be
defined in a few lines:

438CS 538 Spring 2007©

bubbleSort(L,L) :- inOrder(L).

bubbleSort(L1,L2) :-
 append(X,[A,B|Y],L1), A > B,
 append(X,[B,A|Y],T),
 bubbleSort(T,L2).

The first line says that if L is
already in sorted order, we are
done.
The second line is a bit more
complex. It defines what it means
for a list L2 to be a sorting for list
L1, using our insight that we
should swap out-of-order
neighbors. We first partition list
L1 into two lists, X and [A,B|Y].
This “exposes” two adjacent
values in L, A and B. Next we
verify that A and B are out-of-
order (A>B). Next, in
append(X,[B,A|Y],T), we
determine that list T is just our

439CS 538 Spring 2007©

input L, with A and B swapped
into B followed by A.
Finally, we verify that
bubbleSort(T,L2) holds. That
is, T may be bubble-sorted into
L2.
This approach is rather more
directed than our permutation
sort—we look for an out-of-order
pair of values, swap them, and
then sort the “improved” list.
Eventually there will be no more
out-of-order pairs, the list will be
in sorted order, and we will be
done.

440CS 538 Spring 2007©

Merge Sort
Another popular sort in the
“merge sort” that we have already
seen in Scheme and ML. The idea
here is to first split a list of length
L into two sublists of length L/2.
Each of these two lists is
recursively sorted. Finally, the two
sorted sublists are merged
together to form a complete
sorted list.
The bubble sort can take time
proportional to n2 to sort n
elements (as many as n2/2 swaps
may be needed). The merge sort
does better—it takes time
proportional to n log2 n to sort n
elements (a list of size n can only
be split in half log2 n times).

441CS 538 Spring 2007©

We first need Prolog rules on how
to split a list into two equal
halves:
split([],[],[]).
split([A],[A],[]).
split([A,B|T],[A|P1],[B|P2]) :-
 split(T,P1,P2).

The first two lines characterize
trivial splits. The third rule
distributes one of the first two
elements to each of the two
sublists, and then recursively
splits the rest of the list.

442CS 538 Spring 2007©

We also need rules that
characterize how to merge two
sorted sublists into a complete
sorted list:

merge([],L,L).
merge(L,[],L).
merge([A|T1],[B|T2],[A|L2]) :-
 A =< B, merge(T1,[B|T2],L2).
merge([A|T1],[B|T2],[B|L2]) :-
 A > B, merge([A|T1],T2,L2).

The first 2 lines handle merging
null lists. The third line handles
the case where the head of the
first sublist is ≤ the head of the
second sublist; the final rule
handles the case where the head
of the second sublist is smaller.

443CS 538 Spring 2007©

With the above definitions, a
merge sort requires only three
lines:
mergeSort([],[]).

mergeSort([A],[A]).
mergeSort(L1,L2) :-
 split(L1,P1,P2),
 mergeSort(P1,S1),
mergeSort(P2,S2),
merge(S1,S2,L2).

The first two lines handle the
trivial cases of lists of length 0 or
1. The last line contains the full
“logic” of a merge sort: split the
input list, L into two half-sized
lists P1 and P2. Then merge sort
P1 into S1 and P2 into S2. Finally,
merge S1 and S2 into a sorted list
L2. That’s it!

444CS 538 Spring 2007©

Quick Sort
The merge sort partitions its input
list rather blindly, alternating
values between the two lists.
What if we partitioned the input
list based on values rather than
positions?
The quick sort does this. It selects
a “pivot” value (the head of the
input list) and divides the input
into two sublists based on
whether the values in the list are
less than the pivot or greater than
or equal to the pivot. Next the
two sublists are recursively
sorted. But now, after sorting, no
merge phase is needed. Rather,
the two sorted sublists can simply
be appended, since we know all
values in the first list are less than
all values in the second list.

445CS 538 Spring 2007©

We need a Prolog relation that
characterizes how we will do our
partitioning. We we define
partition(E,L1,L2,L3) to be
true if L1 can be partitioned into
L2 and L3 using E as the pivot
element. The necessary rules are:

partition(E,[],[],[]).
partition(E,[A|T1],[A|T2],L3) :-
 A<E, partition(E,T1,T2,L3).
partition(E,[A|T1],L2,[A|T3]) :-
 A>=E, partition(E,T1,L2,T3)

The first line defines a trivial
partition of a null list. The second
line handles the case in which the
first element of the list to be
partitioned is less than the pivot,
while the final line handles the
case in which the list head is
greater than or equal to the pivot.

446CS 538 Spring 2007©

With our notion of partitioning
defined, the quicksort itself
requires only 2 lines:

qsort([],[]).
qsort([A|T],L) :-
partition(A,T,L1,L2),
qsort(L1,S1),qsort(L2,S2),
append(S1,[A|S2],L).

The first line defines a trivial sort
of an empty list.
The second line says to sort a list
that begins with A and ends with
list T, we partition T into sublists
L1 and L2, based on A. Then we
recursively quick sort L1 into S1
and L2 into S2. Finally we append
S1 to [A|S2]
(A must be > all values in S1 and A
must be ≤ all values in S2). The
result is L, a sorting of [A|T].

447CS 538 Spring 2007©

Arithmetic in Prolog
The = predicate can be used to
test bound variables for equality
(actually, identity).
If one or both of =’s arguments are
free variables, = forces a binding
or an equality constraint.
Thus
| ?- 1=2.
no

| ?- X=2.

X = 2

| ?- Y=X.

Y = X = _10751

| ?- X=Y, X=joe.

X = Y = joe

448CS 538 Spring 2007©

Arithmetic Terms are Symbolic
Evaluation of an arithmetic term
into a numeric value must be
forced.
That is, 1+2 is an infix
representation of the relation
+(1,2). This term is not an
integer!
Therefore
| ?- 1+2=3.
no

To force arithmetic evaluation, we
use the infix predicate is.
The right-hand side of is must be
all ground terms (literals or
variables that are already bound).
No free (unbound) variables are
allowed.

449CS 538 Spring 2007©

Hence
|?- 2 is 1+1.
yes

| ?- X is 3*4.
X = 12

| ?- Y is Z+1.
! Instantiation error in argument
2 of is/2
! goal: _10712 is _10715+1

The requirement that the right-
hand side of an is relation be
ground is essentially procedural.
It exists to avoid having to invert
complex equations. Consider,

(0 is (I**N)+(J**N)-K**N)), N>2.

450CS 538 Spring 2007©

Counting in Prolog
Rules that involve counting often
use the is predicate to evaluate a
numeric value.
Consider the relation len(L,N)
that is true if the length of list L is
N.
len([],0).

len([_|T],N) :-
 len(T,M), N is M+1.

| ?- len([1,2,3],X).

X = 3

| ?- len(Y,2).

Y = [_10903,_10905]

The symbols _10903 and _10905
are “internal variables” created as
needed when a particular value is
not forced in a solution.

451CS 538 Spring 2007©

Debugging Prolog
Care is required in developing and
testing Prolog programs because
the language is untyped;
undeclared predicates or relations
are simply treated as false.
Thus in a definition like
 adj([A,B|_]) :- A=B.

 adj([_,B|T]) :- adk([B|T]).

| ?- adj([1,2,2]).
no

(Some Prolog systems warn when
an undefined relation is
referenced, but many others
don’t).

452CS 538 Spring 2007©

Similarly, given
member(A,[A|_]).

 member(A,[_|T]) :-
 member(A,[T]).

| ?- member(2,[1,2]).

Infinite recursion! (Why?)

If you’re not sure what is going
on, Prolog’s trace feature is very
handy.
The command
trace.

turns on tracing. (notrace turns
tracing off).
Hence
| ?- trace.
yes

[trace]

| ?- member(2,[1,2]).

453CS 538 Spring 2007©

(1) 0 Call: member(2,[1,2]) ?

 (1) 1 Head [1->2]:
member(2,[1,2]) ?

 (1) 1 Head [2]:
member(2,[1,2]) ?

(2) 1 Call: member(2,[[2]]) ?

 (2) 2 Head [1->2]:
member(2,[[2]]) ?

 (2) 2 Head [2]:
member(2,[[2]]) ?

 (3) 2 Call: member(2,[[]]) ?

 (3) 3 Head [1->2]:
member(2,[[]]) ?

(3) 3 Head [2]: member(2,[[]])
?

 (4) 3 Call: member(2,[[]]) ?

 (4) 4 Head [1->2]:
member(2,[[]]) ?

(4) 4 Head [2]: member(2,[[]])
?

 (5) 4 Call: member(2,[[]]) ?

454CS 538 Spring 2007©

Termination Issues in Prolog
Searching infinite domains (like
integers) can lead to non-
termination, with Prolog trying
every value.
Consider
odd(1).

odd(N) :- odd(M), N is M+2.

| ?- odd(X).

X = 1 ;

X = 3 ;

X = 5 ;
X = 7

455CS 538 Spring 2007©

A query
 | ?- odd(X), X=2.
going into an infinite search,
generating each and every odd
integer and finding none is equal
to 2!
The obvious alternative,
odd(2) (which is equivalent to
X=2, odd(X)) also does an
infinite, but fruitless search.
We’ll soon learn that Prolog does
have a mechanism to “cut off”
fruitless searches.

456CS 538 Spring 2007©

Definition Order can Matter
Ideally, the order of definition of
facts and rules should not matter.
But,
in practice definition order can
matter. A good general guideline
is to define facts before rules. To
see why, consider a very complete
database of motherOf relations
that goes back as far as
motherOf(cain,eve).

Now we define
isMortal(X) :-
 isMortal(Y), motherOf(X,Y).

isMortal(eve).

457CS 538 Spring 2007©

These definitions state that the
first woman was mortal, and all
individuals descended from her
are also mortal.
But when we try as trivial a query
as
| ?- isMortal(eve).

we go into an infinite search!
Why?
Let’s trace what Prolog does when
it sees
| ?- isMortal(eve).
It matches with the first definition
involving isMortal, which is
isMortal(X) :-
 isMortal(Y), motherOf(X,Y).

It sets X=eve and tries to solve
isMortal(Y), motherOf(eve,Y).

It will then expand isMortal(Y)
into

458CS 538 Spring 2007©

isMortal(Z), motherOf(Y,Z).

An infinite expansion ensues.
The solution is simple—place the
“base case” fact that terminates
recursion first.
If we use
isMortal(eve).

isMortal(X) :-
 isMortal(Y), motherOf(X,Y).
yes

| ?- isMortal(eve).

yes

But now another problem appears!
If we ask
| ?- isMortal(clarkKent).

we go into another infinite search!
Why?
The problem is that Clark Kent is
from the planet Krypton, and

459CS 538 Spring 2007©

hence won’t appear in our
motherOf database.
Let’s trace the query.
It doesn’t match
isMortal(eve).
We next try
isMortal(clarkKent) :-
 isMortal(Y),
 motherOf(clarkKent,Y).

We try Y=eve, but eve isn’t Clark’s
mother. So we recurse, getting:
isMortal(Z), motherOf(Y,Z),
motherOf(clarkKent,Y).

But eve isn’t Clark’s grandmother
either! So we keep going further
back, trying to find a chain of
descendents that leads from eve
to clarkKent. No such chain
exists, and there is no limit to
how long a chain Prolog will try.

460CS 538 Spring 2007©

There is a solution though!
We simply rewrite our recursive
definition to be
 isMortal(X) :-
 motherOf(X,Y),isMortal(Y).

This is logically the same, but
now we work from the individual
X back toward eve, rather than
from eve toward X. Since we have
no motherOf relation involving
clarkKent, we immediately stop
our search and answer no!

