
12CS 538 Spring 2008©

Continuations provide a novel
way to suspend and “re-
execute” computations.

2. ML (“Meta Language”)
Strong, compile-time type
checking.
Types are determined by
inference rather than
declaration.
Naturally polymorphic (one
function declaration can be
used with many different
types).
Pattern-directed programming
(you define patterns that are
automatically matched during a
call).

13CS 538 Spring 2008©

Typed exceptions are provided.
Abstract data types, with
constructors, are included.

3. Prolog (Programming in Logic)
Programs are Facts and Rules.
Programmers are concerned
with definition, not execution.
Execution order is
automatically determined.

14CS 538 Spring 2008©

4. Pizza
Extends a popular Object-
oriented language, Java, to
include
• Parametric polymorphism (similar

to C++’s templates).

• First-class functional objects.

• Algebraic data types, including
patterns.

5. C#
Microsoft’s answer to Java. In
most ways it is very similar to
Java, with some C++ concepts
reintroduced and some useful
additions.

15CS 538 Spring 2008©

• Events and delegates are included
to handle asynchronous actions
(like keyboard or mouse actions).

• Properties allow user-defined read
and write actions for fields.

• Indexers allow objects other than
arrays to be indexed.

• Collection classes may be directly
enumerated:
foreach (int i in array) ...

• Structs and classes co-exist and
may be inter-converted (boxed and
unboxed).

• Enumerations, operator
overloading and rectangular arrays
are provided.

• Reference, out and variable-length
parameter lists are allowed.

16CS 538 Spring 2008©

6. Java 1.5 (Tiger Java, Java 5.0)
Extends current definition of
Java to include:
• Parametric polymorphism

(collection types may be
parameterized).

• Enhanced loop iterators.

• Automatic boxing and unboxing of
wrapper classes.

• Typesafe enumerations.

• Static imports (out.println rather
than System.out.println).

• Variable argument methods.

• Formatted output using printf:
out.printf("Ans = %3d",a+b);

17CS 538 Spring 2008©

7. Python
A simple, efficient scripting
language that quickly builds
new programs out of existing
applications and libraries.
It cleanly includes objects.
It scales nicely into larger
applications.

18CS 538 Spring 2008©

Evolution of Programming
Languages

In the beginning, ...
programs were written in
absolute machine code—a
sequence of bits that encode
machine instructions.
Example:

34020005
0000000c
3c011001
ac220000

This form of programming is
• Very detailed

• Very tedious

• Very error-prone

• Very machine specific

19CS 538 Spring 2008©

Symbolic Assemblers
Allow use of symbols for
operation codes and labels.
Example:

li $v0,5
syscall
sw $v0,a

Far more readable, but still very
detailed, tedious and machine-
specific.
Types are machine types.
Control structures are
conditional branches.
Subprograms are blocks of
code called via a “subroutine
branch” instruction.
All labels are global.

20CS 538 Spring 2008©

Fortran (Formula Translator)
Example:

 do 10 i=1,100

10 a(i)=0

Developed in the mid-50s.
A major step forward:
• Programming became more

“problem oriented” and less
“machine oriented.”

• Notions of control structures (ifs
and do loops) were introduced.

• Subprograms, calls, and
parameters were made available.

• Notions of machine independence
were introduced.

• Has evolved into many new
variants, including Fortran 77,
Fortran 90 and HPF (High
Performance Fortran).

21CS 538 Spring 2008©

Cobol (Common Business
Oriented Language)

Example:
multiply i by 3 giving j.
move j to k.
write line1 after advancing
1 lines.

Developed in the early 60s.
The first widely-standardized
programming language.
Once dominant in the business
world; still important.
Wordy in structure; designed
for non-scientific users.
Raised the issue of who should
program and how important
readability and maintainability
are.

22CS 538 Spring 2008©

Algol 60 (Algorithmic Language)
Example:

real procedure cheb(x,n);
value x,n;
real x; integer n;
cheb :=

if n = 0 then 1
 else if n = 1 then x
 else 2 × x ×
 cheb(x,n-1)-cheb(x,n-2);

Developed about 1960.
A direct precursor of Pascal, C,
C++ and Java.
Introduced many ideas now in
wide use:
• Blocks with local declarations and

scopes.

• Nested declarations and control
structures.

23CS 538 Spring 2008©

• Parameter passing

• Automatic recursion.

But,
• I/O wasn’t standardized.

• IBM promoted Fortran and PL/I.

24CS 538 Spring 2008©

Lisp (List Processing Language)
Example:

((lambda (x) (* x x)) 10)

Developed in the early 60s.
A radical departure from earlier
programming languages.
Programs and data are
represented in a uniform list
format.
Types are a property of data
values, not variables or
parameters.
A program can build and run
new functions as it executes.
Data values were not fixed in
size.

25CS 538 Spring 2008©

Memory management was
automatic.
A formal semantics was
developed to define precisely
what a program means.

26CS 538 Spring 2008©

Simula 67 (Simulation Algol)
Example:

Class Rectangle (Width, Height);
Real Width, Height;
Boolean Procedure IsSquare;
 IsSquare := Width=Height;
End of Rectangle;

Developed about 1967.
Introduced the notion of a class
(for simulation purposes).
Included objects, a garbage
collector, and notions of
extending a class.
C++ was originally C with
classes (as Simula was Algol
with classes).

27CS 538 Spring 2008©

C and C++
C was developed in the early
70’s; C++ in the mid-80s.
These languages have a
concise, expressive syntax;
they generate high quality code
sufficient for performance-
critical applications.
C, along with Unix, proved the
viability of platform-
independent languages and
applications.
C and C++ allow programmers
a great deal of freedom in
bending and breaking rules.
Raises the issue of whether one
language can span both novice
and expert programmers.

28CS 538 Spring 2008©

Interesting issue—if most
statements and expressions are
meaningful, can errors be
readily detected?

if (a=b)

 a=0;

else a = 1;

29CS 538 Spring 2008©

Java
Developed in the late 90s.
Cleaner object-oriented
language than C++.
Introduced notions of dynamic
loading of class definitions
across the Web.
Much stronger emphasis on
secure execution and detection
of run-time errors.
Extended notions of platform
independence to system
independence.

