
16CS 538 Spring 2008©

6. Java 1.5 (Tiger Java, Java 5.0)
Extends current definition of
Java to include:
• Parametric polymorphism

(collection types may be
parameterized).

• Enhanced loop iterators.

• Automatic boxing and unboxing of
wrapper classes.

• Typesafe enumerations.

• Static imports (out.println rather
than System.out.println).

• Variable argument methods.

• Formatted output using printf:
out.printf("Ans = %3d",a+b);

17CS 538 Spring 2008©

7. Python
A simple, efficient scripting
language that quickly builds
new programs out of existing
applications and libraries.
It cleanly includes objects.
It scales nicely into larger
applications.

18CS 538 Spring 2008©

Evolution of Programming
Languages

In the beginning, ...
programs were written in
absolute machine code—a
sequence of bits that encode
machine instructions.
Example:

34020005
0000000c
3c011001
ac220000

This form of programming is
• Very detailed

• Very tedious

• Very error-prone

• Very machine specific

19CS 538 Spring 2008©

Symbolic Assemblers
Allow use of symbols for
operation codes and labels.
Example:

li $v0,5
syscall
sw $v0,a

Far more readable, but still very
detailed, tedious and machine-
specific.
Types are machine types.
Control structures are
conditional branches.
Subprograms are blocks of
code called via a “subroutine
branch” instruction.
All labels are global.

20CS 538 Spring 2008©

Fortran (Formula Translator)
Example:

 do 10 i=1,100

10 a(i)=0

Developed in the mid-50s.
A major step forward:
• Programming became more

“problem oriented” and less
“machine oriented.”

• Notions of control structures (ifs
and do loops) were introduced.

• Subprograms, calls, and
parameters were made available.

• Notions of machine independence
were introduced.

• Has evolved into many new
variants, including Fortran 77,
Fortran 90 and HPF (High
Performance Fortran).

21CS 538 Spring 2008©

Cobol (Common Business
Oriented Language)

Example:
multiply i by 3 giving j.
move j to k.
write line1 after advancing
1 lines.

Developed in the early 60s.
The first widely-standardized
programming language.
Once dominant in the business
world; still important.
Wordy in structure; designed
for non-scientific users.
Raised the issue of who should
program and how important
readability and maintainability
are.

22CS 538 Spring 2008©

Algol 60 (Algorithmic Language)
Example:

real procedure cheb(x,n);
value x,n;
real x; integer n;
cheb :=

if n = 0 then 1
 else if n = 1 then x
 else 2 × x ×
 cheb(x,n-1)-cheb(x,n-2);

Developed about 1960.
A direct precursor of Pascal, C,
C++ and Java.
Introduced many ideas now in
wide use:
• Blocks with local declarations and

scopes.

• Nested declarations and control
structures.

23CS 538 Spring 2008©

• Parameter passing

• Automatic recursion.

But,
• I/O wasn’t standardized.

• IBM promoted Fortran and PL/I.

24CS 538 Spring 2008©

Lisp (List Processing Language)
Example:

((lambda (x) (* x x)) 10)

Developed in the early 60s.
A radical departure from earlier
programming languages.
Programs and data are
represented in a uniform list
format.
Types are a property of data
values, not variables or
parameters.
A program can build and run
new functions as it executes.
Data values were not fixed in
size.

25CS 538 Spring 2008©

Memory management was
automatic.
A formal semantics was
developed to define precisely
what a program means.

26CS 538 Spring 2008©

Simula 67 (Simulation Algol)
Example:

Class Rectangle (Width, Height);
Real Width, Height;
Boolean Procedure IsSquare;
 IsSquare := Width=Height;
End of Rectangle;

Developed about 1967.
Introduced the notion of a class
(for simulation purposes).
Included objects, a garbage
collector, and notions of
extending a class.
C++ was originally C with
classes (as Simula was Algol
with classes).

27CS 538 Spring 2008©

C and C++
C was developed in the early
70’s; C++ in the mid-80s.
These languages have a
concise, expressive syntax;
they generate high quality code
sufficient for performance-
critical applications.
C, along with Unix, proved the
viability of platform-
independent languages and
applications.
C and C++ allow programmers
a great deal of freedom in
bending and breaking rules.
Raises the issue of whether one
language can span both novice
and expert programmers.

28CS 538 Spring 2008©

Interesting issue—if most
statements and expressions are
meaningful, can errors be
readily detected?

if (a=b)

 a=0;

else a = 1;

29CS 538 Spring 2008©

Java
Developed in the late 90s.
Cleaner object-oriented
language than C++.
Introduced notions of dynamic
loading of class definitions
across the Web.
Much stronger emphasis on
secure execution and detection
of run-time errors.
Extended notions of platform
independence to system
independence.

30CS 538 Spring 2008©

What Drives Research into
New Programming Languages?
Why isn’t C or C++ or C+++
enough?
1. Curiosity

What other forms can a
programming language take?
What other notions of
programming are possible?
2. Productivity

Procedural languages,
including C, C++ and Java, are
very detailed.
Many source lines imply
significant development and
maintenance expenses.

31CS 538 Spring 2008©

3. Reliability
Too much low-level detail in
programs greatly enhances the
chance of minor errors. Minor
errors can raise significant
problems in applications.
4. Security

Computers are entrusted with
great responsibilities. How can
we know that a program is safe
and reliable enough to trust?
5. Execution speed

Procedural languages are
closely tied to the standard
sequential model of instruction
execution. We may need
radically different programming
models to fully exploit parallel
and distributed computers.

32CS 538 Spring 2008©

Desirable Qualities in a
Programming Language

Theoretically, all programming
languages are equivalent (Why?)
If that is so, what properties are
desirable in a programming
language?

• It should be easy to use.
Programs should be easy to read and
understand.
Programs should be simple to write,
without subtle pitfalls.
It should be orthogonal, providing
only one way to do each step or
computation.
Its notation should be natural for the
application being programed.

33CS 538 Spring 2008©

• The language should support
abstraction.

You can’t anticipate all needed data
structures and operations, so adding
new definitions easily and efficiently
should be allowed.

• The language should support
testing, debugging and
verification.

• The language should have a good
development environment.

Integrated editors, compilers,
debuggers, and version control are a
big plus.

• The language should be portable,
spanning many platforms and
operating systems.

34CS 538 Spring 2008©

• The language should be
inexpensive to use:

Execution should be fast.
Memory needs should be modest.
Translation should be fast and
modular.
Program creation and testing should
be easy and cheap.
Maintenance should not be unduly
cumbersome.
Components should be reusable.

35CS 538 Spring 2008©

Programming Paradigms
Programming languages
naturally fall into a number of
fundamental styles or
paradigms.

Procedural Languages
Most of the widely-known and
widely-used programming
languages (C, Fortran, Pascal,
Ada, etc.) are procedural.
Programs execute statement by
statement, reading and
modifying a shared memory.
This programming style closely
models conventional sequential
processors linked to a random
access memory (RAM).

36CS 538 Spring 2008©

Question:
Given
a = a + 1;

 if (a > 10)
 b = 10;
 else b = 15;
 a = a * b;

Why can’t 5 processors each
execute one line to make the
program run 5 times faster?

