
30CS 538 Spring 2008©

What Drives Research into
New Programming Languages?
Why isn’t C or C++ or C+++
enough?
1. Curiosity

What other forms can a
programming language take?
What other notions of
programming are possible?

2. Productivity
Procedural languages,
including C, C++ and Java, are
very detailed.
Many source lines imply
significant development and
maintenance expenses.

31CS 538 Spring 2008©

3. Reliability
Too much low-level detail in
programs greatly enhances the
chance of minor errors. Minor
errors can raise significant
problems in applications.

4. Security
Computers are entrusted with
great responsibilities. How can
we know that a program is safe
and reliable enough to trust?

5. Execution speed
Procedural languages are
closely tied to the standard
sequential model of instruction
execution. We may need
radically different programming
models to fully exploit parallel
and distributed computers.

32CS 538 Spring 2008©

Desirable Qualities in a
Programming Language

Theoretically, all programming
languages are equivalent (Why?)
If that is so, what properties are
desirable in a programming
language?

• It should be easy to use.
Programs should be easy to read and
understand.
Programs should be simple to write,
without subtle pitfalls.
It should be orthogonal, providing
only one way to do each step or
computation.
Its notation should be natural for the
application being programed.

33CS 538 Spring 2008©

• The language should support
abstraction.

You can’t anticipate all needed data
structures and operations, so adding
new definitions easily and efficiently
should be allowed.

• The language should support
testing, debugging and
verification.

• The language should have a good
development environment.

Integrated editors, compilers,
debuggers, and version control are a
big plus.

• The language should be portable,
spanning many platforms and
operating systems.

34CS 538 Spring 2008©

• The language should be
inexpensive to use:

Execution should be fast.
Memory needs should be modest.
Translation should be fast and
modular.
Program creation and testing should
be easy and cheap.
Maintenance should not be unduly
cumbersome.
Components should be reusable.

35CS 538 Spring 2008©

Programming Paradigms
Programming languages
naturally fall into a number of
fundamental styles or
paradigms.

Procedural Languages
Most of the widely-known and
widely-used programming
languages (C, Fortran, Pascal,
Ada, etc.) are procedural.
Programs execute statement by
statement, reading and
modifying a shared memory.
This programming style closely
models conventional sequential
processors linked to a random
access memory (RAM).

36CS 538 Spring 2008©

Question:
Given
a = a + 1;

 if (a > 10)
 b = 10;
 else b = 15;
 a = a * b;

Why can’t 5 processors each
execute one line to make the
program run 5 times faster?

37CS 538 Spring 2008©

Functional Languages
Lisp, Scheme and ML are
functional in nature.
Programs are expressions to be
evaluated.
Language design aims to
minimize side-effects, including
assignment.
Alternative evaluation
mechanisms are possible,
including
Lazy (Demand Driven)

Eager (Data Driven or
Speculative)

38CS 538 Spring 2008©

Object-Oriented Languages
C++, Java, Smalltalk, Pizza and
Python are object-oriented.
Data and functions are
encapsulated into Objects.
Objects are active, have
persistent state, and uniform
interfaces (messages or
methods).
Notions of inheritance and
common interfaces are central.
All objects that provide the
same interface are treated
uniformly. In Java you can print
any object that provides the
toString method. Iteration
through the elements of any
object that implements the
Enumeration interface is possible.

39CS 538 Spring 2008©

Subclassing allows to you
extend or redefine part of an
object’s behavior without
reprogramming all of the
object’s definition. Thus in Java,
you can take a Hashtable class
(which is fairly elaborate) and
create a subclass in which an
existing method (like toString)
is redefined, or new operations
are added.

40CS 538 Spring 2008©

Logic Programming
Languages

Prolog notes that most
programming languages
address both the logic of a
program (what is to be done)
and its control flow (how you
do what you want).
A logic programming language,
like Prolog, lets programmers
focus on a program’s logic
without concern for control
issue.
These languages have no real
control structures, and little
notion of “flow of control.”
What results are programs that
are unusually succinct and
focused.

41CS 538 Spring 2008©

Example:
inOrder([]).
inOrder([_]).
inOrder([a,b|c]) :- (a<b),

 inOrder([b|c]).

This is a complete, executable
function that determines if a
list is in order. It is naturally
polymorphic, and is not
cluttered with declarations,
variables or explicit loops.

42CS 538 Spring 2008©

Review of Concepts from
Procedural Programming
Languages

Declarations/Scope/Lifetime/
Binding
Static/Dynamic

• Identifiers are declared, either
explicitly or implicitly (from context of
first use).

• Declarations bind type and kind
information to an identifier. Kind
specifies the grouping of an identifier
(variable, label, function, type name,
etc.)

• Each identifier has a scope (or range)
in a program—that part of the
program in which the identifier is
visible (i.e., may be used).

43CS 538 Spring 2008©

• Data objects have a lifetime—the span
of time, during program execution,
during which the object exists and
may be used.

• Lifetimes of data objects are often tied
to the scope of the identifier that
denotes them. The objects are created
when its identifier’s scope is entered,
and they may be deleted when the
identifier’s scope is exited. For
example, memory for local variables
within a function is usually allocated
when the function is called (activated)
and released when the call terminates.
In Java, a method may be loaded into
memory when the object it is a
member of is first accessed.

44CS 538 Spring 2008©

Properties of an identifier (and the
object it represents) may be set at
• Compile-time

These are static properties as
they do not change during
execution. Examples include
the type of a variable, the value
of a constant, the initial value
of a variable, or the body of a
function.

• Run-time

These are dynamic properties.
Examples include the value of a
variable, the lifetime of a heap
object, the value of a function’s
parameter, the number of times
a while loop iterates, etc.

45CS 538 Spring 2008©

Example:
In Fortran
• The scope of an identifier is the whole

program or subprogram.

• Each identifier may be declared only
once.

• Variable declarations may be implicit.
(Using an identifier implicitly declares
it as a variable.)

• The lifetime of data objects is the
whole program.

