
37CS 538 Spring 2008©

Functional Languages
Lisp, Scheme and ML are
functional in nature.
Programs are expressions to be
evaluated.
Language design aims to
minimize side-effects, including
assignment.
Alternative evaluation
mechanisms are possible,
including
Lazy (Demand Driven)

Eager (Data Driven or
Speculative)

38CS 538 Spring 2008©

Object-Oriented Languages
C++, Java, Smalltalk, Pizza and
Python are object-oriented.
Data and functions are
encapsulated into Objects.
Objects are active, have
persistent state, and uniform
interfaces (messages or
methods).
Notions of inheritance and
common interfaces are central.
All objects that provide the
same interface are treated
uniformly. In Java you can print
any object that provides the
toString method. Iteration
through the elements of any
object that implements the
Enumeration interface is possible.

39CS 538 Spring 2008©

Subclassing allows to you
extend or redefine part of an
object’s behavior without
reprogramming all of the
object’s definition. Thus in Java,
you can take a Hashtable class
(which is fairly elaborate) and
create a subclass in which an
existing method (like toString)
is redefined, or new operations
are added.

40CS 538 Spring 2008©

Logic Programming
Languages

Prolog notes that most
programming languages
address both the logic of a
program (what is to be done)
and its control flow (how you
do what you want).
A logic programming language,
like Prolog, lets programmers
focus on a program’s logic
without concern for control
issue.
These languages have no real
control structures, and little
notion of “flow of control.”
What results are programs that
are unusually succinct and
focused.

41CS 538 Spring 2008©

Example:
inOrder([]).
inOrder([_]).
inOrder([a,b|c]) :- (a<b),

 inOrder([b|c]).

This is a complete, executable
function that determines if a
list is in order. It is naturally
polymorphic, and is not
cluttered with declarations,
variables or explicit loops.

42CS 538 Spring 2008©

Review of Concepts from
Procedural Programming
Languages

Declarations/Scope/Lifetime/
Binding
Static/Dynamic

• Identifiers are declared, either
explicitly or implicitly (from context of
first use).

• Declarations bind type and kind
information to an identifier. Kind
specifies the grouping of an identifier
(variable, label, function, type name,
etc.)

• Each identifier has a scope (or range)
in a program—that part of the
program in which the identifier is
visible (i.e., may be used).

43CS 538 Spring 2008©

• Data objects have a lifetime—the span
of time, during program execution,
during which the object exists and
may be used.

• Lifetimes of data objects are often tied
to the scope of the identifier that
denotes them. The objects are created
when its identifier’s scope is entered,
and they may be deleted when the
identifier’s scope is exited. For
example, memory for local variables
within a function is usually allocated
when the function is called (activated)
and released when the call terminates.
In Java, a method may be loaded into
memory when the object it is a
member of is first accessed.

44CS 538 Spring 2008©

Properties of an identifier (and the
object it represents) may be set at
• Compile-time

These are static properties as
they do not change during
execution. Examples include
the type of a variable, the value
of a constant, the initial value
of a variable, or the body of a
function.

• Run-time

These are dynamic properties.
Examples include the value of a
variable, the lifetime of a heap
object, the value of a function’s
parameter, the number of times
a while loop iterates, etc.

45CS 538 Spring 2008©

Example:
In Fortran
• The scope of an identifier is the whole

program or subprogram.

• Each identifier may be declared only
once.

• Variable declarations may be implicit.
(Using an identifier implicitly declares
it as a variable.)

• The lifetime of data objects is the
whole program.

46CS 538 Spring 2008©

Block Structured Languages
• Include Algol 60, Pascal, C and Java.

• Identifiers may have a non-global
scope. Declarations may be local to a
class, subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained)
scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

47CS 538 Spring 2008©

Binding of an identifier to its
corresponding declaration is
usually static (also called
lexical), though dynamic
binding is also possible.
Static binding is done prior to
execution—at compile-time.
Example (drawn from C):

int x,z;
void A() {
float x,y;

 print(x,y,z);

}
void B() {
 print (x,y,z)

}

float
float

int

int

int
undeclared

48CS 538 Spring 2008©

Block Structure Concepts
• Nested Visibility

No access to identifiers outside
their scope.

• Nearest Declaration Applies

Static name scoping.
• Automatic Allocation and Deallocation

of Locals

Lifetime of data objects is
bound to the scope of the
Identifiers that denote them.

49CS 538 Spring 2008©

Variations in these rules of
name scoping are possible.
For example, in Java, the
lifetime of all class objects is
from the time of their creation
(via new) to the last visible
reference to them.
Thus
 ... Object O;...
creates an object reference but
does not allocate any memory
space for O.
You need
 ... Object O = new Object(); ...
to actually create memory
space for O.

50CS 538 Spring 2008©

Dynamic Scoping
An alternative to static scoping
is dynamic scoping, which was
used in early Lisp dialects (but
not in Scheme, which is
statically scoped).
Under dynamic scoping,
identifiers are bound to the
dynamically closest declaration
of the identifier. Thus if an
identifier is not locally
declared, the call chain
(sequence of callers) is
examined to find a matching
declaration.

51CS 538 Spring 2008©

Example:
 int x;

 void print() {

 write(x); }

 main () {

 bool x;

 print();

 }

Under static scoping the x
written in print is the lexically
closest declaration of x, which
is as an int.
Under dynamic scoping, since
print has no local declaration
of x, print’s caller is examined.
Since main calls print, and it
has a declaration of x as a bool,
that declaration is used.

52CS 538 Spring 2008©

Dynamic scoping makes type
checking and variable access
harder and more costly than
static scoping. (Why?)
However, dynamic scoping
does allow a notion of an
“extended scope” in which
declarations extend to
subprograms called within that
scope.
Though dynamic scoping may
seen a bit bizarre, it is closely
related to virtual functions
used in C++ and Java.

53CS 538 Spring 2008©

Virtual Functions
A function declared in a class,
C, may be redeclared in a class
derived from C. Moreover, for
uniformity of redeclaration, it is
important that all calls,
including those in methods
within C, use the new
declaration.
Example:

class C {

 void DoIt()(PrintIt();}
 void PrintIt()
 {println(“C rules!”);}
 }
 class D extends C {
 void PrintIt()
 {println(“D rules!”);}
 void TestIt() {DoIt();}
 }
 D dvar = new D();
 dvar.TestIt();

D rules! is printed.

