
44CS 538 Spring 2008©

Properties of an identifier (and the
object it represents) may be set at
• Compile-time

These are static properties as
they do not change during
execution. Examples include
the type of a variable, the value
of a constant, the initial value
of a variable, or the body of a
function.

• Run-time

These are dynamic properties.
Examples include the value of a
variable, the lifetime of a heap
object, the value of a function’s
parameter, the number of times
a while loop iterates, etc.

45CS 538 Spring 2008©

Example:
In Fortran
• The scope of an identifier is the whole

program or subprogram.

• Each identifier may be declared only
once.

• Variable declarations may be implicit.
(Using an identifier implicitly declares
it as a variable.)

• The lifetime of data objects is the
whole program.

46CS 538 Spring 2008©

Block Structured Languages
• Include Algol 60, Pascal, C and Java.

• Identifiers may have a non-global
scope. Declarations may be local to a
class, subprogram or block.

• Scopes may nest, with declarations
propagating to inner (contained)
scopes.

• The lexically nearest declaration of an
identifier is bound to uses of that
identifier.

47CS 538 Spring 2008©

Binding of an identifier to its
corresponding declaration is
usually static (also called
lexical), though dynamic
binding is also possible.
Static binding is done prior to
execution—at compile-time.
Example (drawn from C):

int x,z;
void A() {
float x,y;

 print(x,y,z);

}
void B() {
 print (x,y,z)

}

float
float

int

int

int
undeclared

48CS 538 Spring 2008©

Block Structure Concepts
• Nested Visibility

No access to identifiers outside
their scope.

• Nearest Declaration Applies

Static name scoping.
• Automatic Allocation and Deallocation

of Locals

Lifetime of data objects is
bound to the scope of the
Identifiers that denote them.

49CS 538 Spring 2008©

Variations in these rules of
name scoping are possible.
For example, in Java, the
lifetime of all class objects is
from the time of their creation
(via new) to the last visible
reference to them.
Thus
 ... Object O;...
creates an object reference but
does not allocate any memory
space for O.
You need
 ... Object O = new Object(); ...
to actually create memory
space for O.

50CS 538 Spring 2008©

Dynamic Scoping
An alternative to static scoping
is dynamic scoping, which was
used in early Lisp dialects (but
not in Scheme, which is
statically scoped).
Under dynamic scoping,
identifiers are bound to the
dynamically closest declaration
of the identifier. Thus if an
identifier is not locally
declared, the call chain
(sequence of callers) is
examined to find a matching
declaration.

51CS 538 Spring 2008©

Example:
 int x;

 void print() {

 write(x); }

 main () {

 bool x;

 print();

 }

Under static scoping the x
written in print is the lexically
closest declaration of x, which
is as an int.
Under dynamic scoping, since
print has no local declaration
of x, print’s caller is examined.
Since main calls print, and it
has a declaration of x as a bool,
that declaration is used.

52CS 538 Spring 2008©

Dynamic scoping makes type
checking and variable access
harder and more costly than
static scoping. (Why?)
However, dynamic scoping
does allow a notion of an
“extended scope” in which
declarations extend to
subprograms called within that
scope.
Though dynamic scoping may
seen a bit bizarre, it is closely
related to virtual functions
used in C++ and Java.

53CS 538 Spring 2008©

Virtual Functions
A function declared in a class,
C, may be redeclared in a class
derived from C. Moreover, for
uniformity of redeclaration, it is
important that all calls,
including those in methods
within C, use the new
declaration.
Example:

class C {

 void DoIt()(PrintIt();}
 void PrintIt()
 {println(“C rules!”);}
 }
 class D extends C {
 void PrintIt()
 {println(“D rules!”);}
 void TestIt() {DoIt();}
 }
 D dvar = new D();
 dvar.TestIt();

D rules! is printed.

54CS 538 Spring 2008©

Scope vs. Lifetime
It is usually required that the
lifetime of a run-time object at
least cover the scope of the
identifier. That is, whenever
you can access an identifier, the
run-time object it denotes
better exist.
But,
it is possible to have a run-time
object’s lifetime exceed the
scope of its identifier. An
example of this is static or own
variables.

55CS 538 Spring 2008©

In C:
void p() {

 static int i = 0;
 print(i++);
 }

Each call to p prints a different
value of i (0, 1, ...) Variable i
retains its value across calls.
Some languages allow an
explicit binding of an identifier
for a fixed scope:

A declaration may appear
wherever a statement or
expression is allowed. Limited
scopes enhance readability.

Let
id = val

in
 statements
end;

{
 type id = val;
 statements
}

56CS 538 Spring 2008©

Structs vs. Blocks
Many programming languages,
including C, C++, C#, Pascal
and Ada, have a notion of
grouping data together into
structs or records.
For example:
struct complex { float re, im; }

There is also the notion of
grouping statements and
declarations into blocks:
{ float re, im;

 re = 0.0; im = 1.0;

 }

57CS 538 Spring 2008©

Blocks and structs look similar,
but there are significant
differences:
Structs are data,
• As originally designed, structs

contain only data (no functions or
methods).

• Structs can be dynamically created,
in any number, and included in
other data structures (e.g., in an
array of structs).

• All fields in a struct are visible
outside the struct.

58CS 538 Spring 2008©

Blocks are code,
• They can contain both code and

data.

• Blocks can’t be dynamically created
during execution; they are “built
into” a program.

• Locals in a block aren’t visible
outside the block.

By adding functions and
initialization code to structs,
we get classes—a nice blend of
structs and blocks.
For example:
class complex{

 float re, im;

complex (float v1, float v2){

 re = v1; im = v2; }

 }

59CS 538 Spring 2008©

Classes
• Class objects can be created as

needed, in any number, and included
in other data structure.

• They include both data (fields) and
functions (methods).

• They include mechanisms to initialize
themselves (constructors) and to
finalize themselves (destructors).

• They allow controlled access to
members (private and public
declarations).

60CS 538 Spring 2008©

Type Equivalence in Classes
In C, C++ and Java, instances of
the same struct or class are
type-equivalent, and mutually
assignable.
For example:
class MyClass { ... }
MyClass v1, v2;
v1 = v2; // Assignment is OK

We expect to be able to assign
values of the same type,
including class objects.
However, sometimes a class
models a data object whose
size or shape is set upon
creation (in a constructor).

61CS 538 Spring 2008©

Then we may not want
assignment to be allowed.

class Point {
 int dimensions;
 float coordinates[];
 Point () {
 dimensions = 2;
 coordinates = new float[2];
 }
 Point (int d) {
 dimensions = d;
 coordinates = new float[d];
 }
 }
 Point plane = new Point();
 Point solid = new Point(3);
 plane = solid; //OK in Java

This assignment is allowed,
even though the two objects
represent points in different
dimensions.

62CS 538 Spring 2008©

Subtypes
In C++, C# and Java we can
create subclasses—new classes
derived from an existing class.
We can use subclasses to create
new data objects that are
similar (since they are based on
a common parent), but still
type-inequivalent.
Example:
class Point2 extends Point {

 Point2() {super(2); }
 }
 class Point3 extends Point {
 Point3() {super(3); }
 }
 Point2 plane = new Point2();
 Point3 solid = new Point3();

plane = solid; //Illegal in Java

63CS 538 Spring 2008©

Parametric Polymorphism
We can create distinct
subclasses based on the values
passed to constructors. But
sometimes we want to create
subclasses based on distinct
types, and types can’t be
passed as parameters. (Types
are not values, but rather a
property of values.)
We see this problem in Java,
which tries to create general
purpose data structures by
basing them on the class
Object. Since any object can be
assigned to Object (all classes
must be a subclass of Object),
this works—at least partially.

64CS 538 Spring 2008©

class LinkedList {
 Object value;
 LinkedList next;
 Object head() {return value;}
LinkedList tail(){return next;}

 LinkedList(Object O) {
 value = O; next = null;}
 LinkedList(Object O,
 LinkedList L){
 value = O; next = L;}
}

Using this class, we can create
a linked list of any subtype of
Object.
But,
• We can’t guarantee that linked lists

are type homogeneous (contain
only a single type).

• We must cast Object types back
into their “real” types when we
extract list values.

65CS 538 Spring 2008©

• We must use wrapper classes like
Integer rather than int (because
primitive types like int aren’t
objects, and aren’t subclass of
Object).

For example, to use LinkedList
to build a linked list of ints we
do the following:
LinkedList l =

 new LinkedList(new Integer(123));

 int i =
 ((Integer) l.head()).intValue();

This is pretty clumsy code.
We’d prefer a mechanism that
allows us to create a “custom
version” of LinkedList, based
on the type we want the list to
contain.

66CS 538 Spring 2008©

We can’t just call something like
LinkedList(int) or
LinkedList(Integer) because

types can’t be passed as
parameters.
Parametric polymorphism is
the solution. Using this
mechanism, we can use type
parameters to build a “custom
version” of a class from a
general purpose class.
C++ allows this using its
template mechanism. Tiger Java
also allows type parameters.
In both languages, type
parameters are enclosed in
“angle brackets” (e.g.,
LinkedList<T> passes T, a type,
to the LinkedList class).

67CS 538 Spring 2008©

Thus we have
class LinkedList<T> {
 T value; LinkedList<T> next;
 T head() {return value;}
 LinkedList<T> tail() {
 return next;}
 LinkedList(T O) {
 value = O; next = null;}
 LinkedList(T O,LinkedList<T> L)
 {value = O; next = L;}
}
LinkedList<int> l =
 new LinkedList(123);

int i = l.head();

