
54CS 538 Spring 2008©

Scope vs. Lifetime
It is usually required that the
lifetime of a run-time object at
least cover the scope of the
identifier. That is, whenever
you can access an identifier, the
run-time object it denotes
better exist.
But,
it is possible to have a run-time
object’s lifetime exceed the
scope of its identifier. An
example of this is static or own
variables.

55CS 538 Spring 2008©

In C:
void p() {

 static int i = 0;
 print(i++);
 }

Each call to p prints a different
value of i (0, 1, ...) Variable i
retains its value across calls.
Some languages allow an
explicit binding of an identifier
for a fixed scope:

A declaration may appear
wherever a statement or
expression is allowed. Limited
scopes enhance readability.

Let
id = val

in
 statements
end;

{
 type id = val;
 statements
}

56CS 538 Spring 2008©

Structs vs. Blocks
Many programming languages,
including C, C++, C#, Pascal
and Ada, have a notion of
grouping data together into
structs or records.
For example:
struct complex { float re, im; }

There is also the notion of
grouping statements and
declarations into blocks:
{ float re, im;

 re = 0.0; im = 1.0;

 }

57CS 538 Spring 2008©

Blocks and structs look similar,
but there are significant
differences:
Structs are data,
• As originally designed, structs

contain only data (no functions or
methods).

• Structs can be dynamically created,
in any number, and included in
other data structures (e.g., in an
array of structs).

• All fields in a struct are visible
outside the struct.

58CS 538 Spring 2008©

Blocks are code,
• They can contain both code and

data.

• Blocks can’t be dynamically created
during execution; they are “built
into” a program.

• Locals in a block aren’t visible
outside the block.

By adding functions and
initialization code to structs,
we get classes—a nice blend of
structs and blocks.
For example:
class complex{

 float re, im;

complex (float v1, float v2){

 re = v1; im = v2; }

 }

59CS 538 Spring 2008©

Classes
• Class objects can be created as

needed, in any number, and included
in other data structure.

• They include both data (fields) and
functions (methods).

• They include mechanisms to initialize
themselves (constructors) and to
finalize themselves (destructors).

• They allow controlled access to
members (private and public
declarations).

60CS 538 Spring 2008©

Type Equivalence in Classes
In C, C++ and Java, instances of
the same struct or class are
type-equivalent, and mutually
assignable.
For example:
class MyClass { ... }
MyClass v1, v2;
v1 = v2; // Assignment is OK

We expect to be able to assign
values of the same type,
including class objects.
However, sometimes a class
models a data object whose
size or shape is set upon
creation (in a constructor).

61CS 538 Spring 2008©

Then we may not want
assignment to be allowed.

class Point {
 int dimensions;
 float coordinates[];
 Point () {
 dimensions = 2;
 coordinates = new float[2];
 }
 Point (int d) {
 dimensions = d;
 coordinates = new float[d];
 }
 }
 Point plane = new Point();
 Point solid = new Point(3);
 plane = solid; //OK in Java

This assignment is allowed,
even though the two objects
represent points in different
dimensions.

62CS 538 Spring 2008©

Subtypes
In C++, C# and Java we can
create subclasses—new classes
derived from an existing class.
We can use subclasses to create
new data objects that are
similar (since they are based on
a common parent), but still
type-inequivalent.
Example:
class Point2 extends Point {

 Point2() {super(2); }
 }
 class Point3 extends Point {
 Point3() {super(3); }
 }
 Point2 plane = new Point2();
 Point3 solid = new Point3();

plane = solid; //Illegal in Java

63CS 538 Spring 2008©

Parametric Polymorphism
We can create distinct
subclasses based on the values
passed to constructors. But
sometimes we want to create
subclasses based on distinct
types, and types can’t be
passed as parameters. (Types
are not values, but rather a
property of values.)
We see this problem in Java,
which tries to create general
purpose data structures by
basing them on the class
Object. Since any object can be
assigned to Object (all classes
must be a subclass of Object),
this works—at least partially.

64CS 538 Spring 2008©

class LinkedList {
 Object value;
 LinkedList next;
 Object head() {return value;}
LinkedList tail(){return next;}

 LinkedList(Object O) {
 value = O; next = null;}
 LinkedList(Object O,
 LinkedList L){
 value = O; next = L;}
}

Using this class, we can create
a linked list of any subtype of
Object.
But,
• We can’t guarantee that linked lists

are type homogeneous (contain
only a single type).

• We must cast Object types back
into their “real” types when we
extract list values.

65CS 538 Spring 2008©

• We must use wrapper classes like
Integer rather than int (because
primitive types like int aren’t
objects, and aren’t subclass of
Object).

For example, to use LinkedList
to build a linked list of ints we
do the following:
LinkedList l =

 new LinkedList(new Integer(123));

 int i =
 ((Integer) l.head()).intValue();

This is pretty clumsy code.
We’d prefer a mechanism that
allows us to create a “custom
version” of LinkedList, based
on the type we want the list to
contain.

66CS 538 Spring 2008©

We can’t just call something like
LinkedList(int) or
LinkedList(Integer) because

types can’t be passed as
parameters.
Parametric polymorphism is
the solution. Using this
mechanism, we can use type
parameters to build a “custom
version” of a class from a
general purpose class.
C++ allows this using its
template mechanism. Tiger Java
also allows type parameters.
In both languages, type
parameters are enclosed in
“angle brackets” (e.g.,
LinkedList<T> passes T, a type,
to the LinkedList class).

67CS 538 Spring 2008©

Thus we have
class LinkedList<T> {
 T value; LinkedList<T> next;
 T head() {return value;}
 LinkedList<T> tail() {
 return next;}
 LinkedList(T O) {
 value = O; next = null;}
 LinkedList(T O,LinkedList<T> L)
 {value = O; next = L;}
}
LinkedList<int> l =
 new LinkedList(123);

int i = l.head();

68CS 538 Spring 2008©

Overloading and Ad-hoc
Polymorphism

Classes usually allow
overloading of method names,
if only to support multiple
constructors.
That is, more than one method
definition with the same name
is allowed within a class, as
long as the method definitions
differ in the number and/or
types of the parameters they
take.
For example,
class MyClass {
 int f(int i) { ... }
 int f(float g) { ... }
 int f(int i, int j) { ... }
}

69CS 538 Spring 2008©

Overloading is sometimes
called “ad hoc” polymorphism,
because, to the programmer, it
appears that one method can
take a variety of different
parameter types. This isn’t true
polymorphism because the
methods have different bodies;
there is no sharing of one
definition among different
parameter types. There is no
guarantee that the different
definitions do the same thing,
even though they share a
common name.

70CS 538 Spring 2008©

Issues in Overloading
Though many languages allow
overloading, few allow
overloaded methods to differ
only on their result types.
(Neither C++ nor Java allow this
kind of overloading, though
Ada does). For example,
class MyClass {
 int f() { ... }
 float f() { ... }
}

is illegal. This is unfortunate;
methods with the same name
and parameters, but different
result types, could be used to
automatically convert result
values to the type demanded
by the context of call.

71CS 538 Spring 2008©

Why is this form of overloading
usually disallowed?
It’s because overload resolution
(deciding which definition to
use) becomes much harder.
Consider
class MyClass {
 int f(int i, int j) { ... }
 float f(float i, float j) { ... }
 float f(int i, int j) { ... }
}

in
int a = f(f(1,2), f(3,4));

which definitions of f do we
use in each of the three calls?
Getting the correctly answer
can be tricky, though solution
algorithms do exist.

72CS 538 Spring 2008©

Operator Overloading
Some languages, like C++ and
C#, allow operators to be
overloaded. You may add new
definitions to existing
operators, and use them on
your own types. For example,
 class MyClass {

 int i;
 public:
 int operator+(int j) {
 return i+j; }
 }
 MyClass c;
 int i = c+10;
 int j = c.operator+(10);
 int k = 10+c; // Illegal!

73CS 538 Spring 2008©

The expression 10+c is illegal
because there is no definition
of + for the types int and
MyClass&. We can create one by
using C++’s friend mechanism
to insert a definition into
MyClass that will have access to
MyClass’s private data:

class MyClass {

 int i;
 public:
 int operator+(int j) {
 return i+j; }
 friend int operator+
 (int j, MyClass& v){
 return j+v.i; }
 }
 MyClass c;
 int k = 10+c; // Now OK!

74CS 538 Spring 2008©

C++ limits operator overloading
to existing predefined operators.
A few languages, like Algol 68 (a
successor to Algol 60, developed
in 1968), allow programmers to
define brand new operators.
In addition to defining the
operator itself, it is also necessary
to specify the operator’s
precedence (which operator is to
be applied first) and its
associativity (does the operator
associate from left to right, or
right to left, or not at all). Given
this extra detail, it is possible to
specify something like
op +++ prec = 8;

 int op +++(int& i, int& j) {
 return (i++)+(j++); }

(Why is int& used as the
parameter type rather than int?)

