
70CS 538 Spring 2008©

Issues in Overloading
Though many languages allow
overloading, few allow
overloaded methods to differ
only on their result types.
(Neither C++ nor Java allow this
kind of overloading, though
Ada does). For example,
class MyClass {
 int f() { ... }
 float f() { ... }
}

is illegal. This is unfortunate;
methods with the same name
and parameters, but different
result types, could be used to
automatically convert result
values to the type demanded
by the context of call.

71CS 538 Spring 2008©

Why is this form of overloading
usually disallowed?
It’s because overload resolution
(deciding which definition to
use) becomes much harder.
Consider
class MyClass {
 int f(int i, int j) { ... }
 float f(float i, float j) { ... }
 float f(int i, int j) { ... }
}

in
int a = f(f(1,2), f(3,4));

which definitions of f do we
use in each of the three calls?
Getting the correctly answer
can be tricky, though solution
algorithms do exist.

72CS 538 Spring 2008©

Operator Overloading
Some languages, like C++ and
C#, allow operators to be
overloaded. You may add new
definitions to existing
operators, and use them on
your own types. For example,
 class MyClass {

 int i;
 public:
 int operator+(int j) {
 return i+j; }
 }
 MyClass c;
 int i = c+10;
 int j = c.operator+(10);
 int k = 10+c; // Illegal!

73CS 538 Spring 2008©

The expression 10+c is illegal
because there is no definition
of + for the types int and
MyClass&. We can create one by
using C++’s friend mechanism
to insert a definition into
MyClass that will have access to
MyClass’s private data:

class MyClass {

 int i;
 public:
 int operator+(int j) {
 return i+j; }
 friend int operator+
 (int j, MyClass& v){
 return j+v.i; }
 }
 MyClass c;
 int k = 10+c; // Now OK!

74CS 538 Spring 2008©

C++ limits operator overloading
to existing predefined operators.
A few languages, like Algol 68 (a
successor to Algol 60, developed
in 1968), allow programmers to
define brand new operators.
In addition to defining the
operator itself, it is also necessary
to specify the operator’s
precedence (which operator is to
be applied first) and its
associativity (does the operator
associate from left to right, or
right to left, or not at all). Given
this extra detail, it is possible to
specify something like
op +++ prec = 8;

 int op +++(int& i, int& j) {
 return (i++)+(j++); }

(Why is int& used as the
parameter type rather than int?)

75CS 538 Spring 2008©

Parameter Binding
Almost all programming
languages have some notion of
binding an actual parameter
(provided at the point of call) to a
formal parameter (used in the
body of a subprogram).
There are many different, and
inequivalent, methods of
parameter binding. Exactly which
is used depends upon the
programming language in
question.
Parameter Binding Modes include:
• Value: The formal parameter

represents a local variable
initialized to the value of the
corresponding actual parameter.

76CS 538 Spring 2008©

• Result: The formal parameter
represents a local variable. Its final
value, at the point of return, is
copied into the corresponding
actual parameter.

• Value/Result: A combination of the
value and results modes. The
formal parameter is a local variable
initialized to the value of the
corresponding actual parameter.
The formal’s final value, at the
point of return, is copied into the
corresponding actual parameter.

• Reference: The formal parameter is
a pointer to the corresponding
actual parameter. All references to
the formal parameter indirectly
access the corresponding actual
parameter through the pointer.

77CS 538 Spring 2008©

• Name: The formal parameter
represents a block of code
(sometimes called a thunk) that is
evaluated to obtain the value or
address of the corresponding
actual parameter. Each reference to
the formal parameter causes the
thunk to be reevaluated.

• Readonly (sometimes called Const):
Only reads of the formal parameter
are allowed. Either a copy of the
actual parameter’s value, or its
address, may be used.

78CS 538 Spring 2008©

What Parameter Modes do
Programming Languages Use?
• C: Value mode except for arrays which

pass a pointer to the start of the array.

• C++: Allows reference as well as value
modes. E.g.,

int f(int a, int& b)

• C#: Allows result (out) as well as
reference and value modes. E.g.,

int g(int a, out int b)

• Java: Scalar types (int, float, char,
etc.) are passed by value; objects are
passed by reference (references to
objects are passed by value).

• Fortran: Reference (even for
constants!)

• Ada: Value/result, reference, and
readonly are used.

79CS 538 Spring 2008©

Example
void p(value int a,
 reference int b,
 name int c) {
 a=1; b=2; print(c)
}
int i=3, j=3, k[10][10];
p(i,j,k[i][j]);

What element of k is printed?
• The assignment to a does not

affect i, since a is a value
parameter.

• The assignment to b does affect j,
since b is a reference parameter.

• c is a name parameter, so it is
evaluated whenever it is used. In
the print statement k[i][j] is
printed. At that point i=3 and j=2,
so k[3][2] is printed.

80CS 538 Spring 2008©

Why are there so Many
Different Parameter Modes?

Parameter modes reflect
different views on how
parameters are to be accessed,
as well as different degrees of
efficiency in accessing and
using parameters.
• Call by value protects the actual

parameter value. No matter what
the subprogram does, the
parameter can’t be changed.

• Call by reference allows immediate
updates to the actual parameter.

• Call by readonly protects the actual
parameter and emphasizes the
“constant” nature of the formal
parameter.

81CS 538 Spring 2008©

• Call by value/result allows actual
parameters to change, but treats a
call as a single step (assign
parameter values, execute the
subprogram’s body, update
parameter values).

• Call by name delays evaluation of
an actual parameter until it is
actually needed (which may be
never).

82CS 538 Spring 2008©

Call by Name
Call by name is a special kind
of parameter passing mode. It
allows some calls to complete
that otherwise would fail.
Consider
f(i,j/0)

Normally, when j/0 is
evaluated, a divide fault
terminates execution. If j/0 is
passed by name, the division is
delayed until the parameter is
needed, which may be never.
Call by name also allows
programmers to create some
interesting solutions to hard
programming problems.

83CS 538 Spring 2008©

Consider the conditional
expression found in C, C++,
and Java:
(cond ? value1 : value2)

What if we want to implement
this as a function call:
condExpr(cond,value1,value2) {

 if (cond)
 return value1;
 else return value2;
 }

With most parameter passing
modes this implementation
won’t work! (Why?)
But if value1 and value2 are
passed by name, the
implementation is correct.

84CS 538 Spring 2008©

Call by Name and Lazy
Evaluation

Call by name has much of the
flavor of lazy evaluation. With
lazy evaluation, you don’t
compute a value but rather a
suspension—a function that will
provide a value when called.
This can be useful when we need
to control how much of a
computation is actually
performed.
Consider an infinite list of
integers. Mathematically it is
represented as
 1, 2, 3, ...
How do we compute a data
structure that represents an
infinite list?

85CS 538 Spring 2008©

The obvious computation
infList(int start) {

 return list(start,
 infList(start+1));
 }

doesn’t work. (Why?)
A less obvious implementation,
using suspensions, does work:
infList(int start) {

 return list(start,
 function() {
 return infList(start+1);
 });
}

Now, whenever we are given an
infinite list, we get two things: the
first integer in the list and a
suspension function. When called,
this function will give you the rest
of the infinite list (again, one
more value and another
suspension function).

86CS 538 Spring 2008©

The whole list is there, but only as
much as you care to access is
actually computed.

87CS 538 Spring 2008©

Eager Parameter Evaluation
Sometimes we want parameters
evaluated eagerly—as soon as
they are known.
Consider a sorting routine that
breaks an array in half, sorts
each half, and then merges
together the two sorted halves
(this is a merge sort).
In outline form it is:
sort(inputArray) {
 ...
merge(sort(leftHalf(inputArray)),
 sort(rightHalf(inputArray)));}

This definition lends itself
nicely to parallel evaluation:
The two halves of an input
array can be sorted in parallel.
Each of these two halves can

88CS 538 Spring 2008©

again be split in two, allowing
parallel sorting of four quarter-
sized arrays, then leading to 8
sorts of 1/8 sized arrays, etc.
But,
to make this all work, the two
parameters to merge must be
evaluated eagerly, rather than
in sequence.

