
78CS 538 Spring 2008©

What Parameter Modes do
Programming Languages Use?
• C: Value mode except for arrays which

pass a pointer to the start of the array.

• C++: Allows reference as well as value
modes. E.g.,

int f(int a, int& b)

• C#: Allows result (out) as well as
reference and value modes. E.g.,

int g(int a, out int b)

• Java: Scalar types (int, float, char,
etc.) are passed by value; objects are
passed by reference (references to
objects are passed by value).

• Fortran: Reference (even for
constants!)

• Ada: Value/result, reference, and
readonly are used.

79CS 538 Spring 2008©

Example
void p(value int a,
 reference int b,
 name int c) {
 a=1; b=2; print(c)
}
int i=3, j=3, k[10][10];
p(i,j,k[i][j]);

What element of k is printed?
• The assignment to a does not

affect i, since a is a value
parameter.

• The assignment to b does affect j,
since b is a reference parameter.

• c is a name parameter, so it is
evaluated whenever it is used. In
the print statement k[i][j] is
printed. At that point i=3 and j=2,
so k[3][2] is printed.

80CS 538 Spring 2008©

Why are there so Many
Different Parameter Modes?

Parameter modes reflect
different views on how
parameters are to be accessed,
as well as different degrees of
efficiency in accessing and
using parameters.
• Call by value protects the actual

parameter value. No matter what
the subprogram does, the
parameter can’t be changed.

• Call by reference allows immediate
updates to the actual parameter.

• Call by readonly protects the actual
parameter and emphasizes the
“constant” nature of the formal
parameter.

81CS 538 Spring 2008©

• Call by value/result allows actual
parameters to change, but treats a
call as a single step (assign
parameter values, execute the
subprogram’s body, update
parameter values).

• Call by name delays evaluation of
an actual parameter until it is
actually needed (which may be
never).

82CS 538 Spring 2008©

Call by Name
Call by name is a special kind
of parameter passing mode. It
allows some calls to complete
that otherwise would fail.
Consider
f(i,j/0)

Normally, when j/0 is
evaluated, a divide fault
terminates execution. If j/0 is
passed by name, the division is
delayed until the parameter is
needed, which may be never.
Call by name also allows
programmers to create some
interesting solutions to hard
programming problems.

83CS 538 Spring 2008©

Consider the conditional
expression found in C, C++,
and Java:
(cond ? value1 : value2)

What if we want to implement
this as a function call:
condExpr(cond,value1,value2) {

 if (cond)
 return value1;
 else return value2;
 }

With most parameter passing
modes this implementation
won’t work! (Why?)
But if value1 and value2 are
passed by name, the
implementation is correct.

84CS 538 Spring 2008©

Call by Name and Lazy
Evaluation

Call by name has much of the
flavor of lazy evaluation. With
lazy evaluation, you don’t
compute a value but rather a
suspension—a function that will
provide a value when called.
This can be useful when we need
to control how much of a
computation is actually
performed.
Consider an infinite list of
integers. Mathematically it is
represented as
 1, 2, 3, ...
How do we compute a data
structure that represents an
infinite list?

85CS 538 Spring 2008©

The obvious computation
infList(int start) {

 return list(start,
 infList(start+1));
 }

doesn’t work. (Why?)
A less obvious implementation,
using suspensions, does work:
infList(int start) {

 return list(start,
 function() {
 return infList(start+1);
 });
}

Now, whenever we are given an
infinite list, we get two things: the
first integer in the list and a
suspension function. When called,
this function will give you the rest
of the infinite list (again, one
more value and another
suspension function).

86CS 538 Spring 2008©

The whole list is there, but only as
much as you care to access is
actually computed.

87CS 538 Spring 2008©

Eager Parameter Evaluation
Sometimes we want parameters
evaluated eagerly—as soon as
they are known.
Consider a sorting routine that
breaks an array in half, sorts
each half, and then merges
together the two sorted halves
(this is a merge sort).
In outline form it is:
sort(inputArray) {
 ...
merge(sort(leftHalf(inputArray)),
 sort(rightHalf(inputArray)));}

This definition lends itself
nicely to parallel evaluation:
The two halves of an input
array can be sorted in parallel.
Each of these two halves can

88CS 538 Spring 2008©

again be split in two, allowing
parallel sorting of four quarter-
sized arrays, then leading to 8
sorts of 1/8 sized arrays, etc.
But,
to make this all work, the two
parameters to merge must be
evaluated eagerly, rather than
in sequence.

89CS 538 Spring 2008©

Type Equivalence
Programming languages use
types to describe the values a
data object may hold and the
operations that may be
performed.
By checking the types of values,
potential errors in expressions,
assignments and calls may be
automatically detected. For
example, type checking tells us
that
123 + "123"

is illegal because addition is not
defined for an integer, string
combination.
Type checking is usually done at
compile-time; this is static typing.

90CS 538 Spring 2008©

Type-checking may also be done
at run-time; this is dynamic
typing.
A program is type-safe if it is
impossible to apply an operation
to a value of the wrong type. In a
type-safe language, plus is never
told to add an integer to a string,
because its definition does not
allow that combination of
operands. In type-safe programs
an operator can still see an illegal
value (e.g., a division by zero),
but it can’t see operands of the
wrong type.
A strongly-typed programming
language forbids the execution of
type-unsafe programs.
Weakly-typed programming
languages allow the execution of
potentially type-unsafe programs.

91CS 538 Spring 2008©

The question reduces to whether
the programming language allows
programmers to “break” the type
rules, either knowingly or
unknowingly.
Java is strongly typed; type errors
preclude execution. C and C++
are weakly typed; you can break
the rules if you wish. For
example:
 int i; int* p;

 p = (int *) i * i;

Now p may be used as an integer
pointer though multiplication
need not produce valid integer
pointers.
If we are going to do type
checking in a program, we must
decide whether two types, T1 and
T2 are equivalent; that is, whether
they be used interchangeably.

92CS 538 Spring 2008©

There are two major approaches
to type equivalence:
Name Equivalence:
Two types are equivalent if and
only if they refer to exactly the
same type declaration.
For example,
type PackerSalaries = int[100];

 type AssemblySizes = int[100];
 PackerSalaries salary;
 AssemblySizes size;

Is
sal = size;

allowed?
Using name equivalence, no. That
is, salary /≡N size since these
two variables have different type
declarations (that happen to be
identical in structure).

93CS 538 Spring 2008©

Formally, we define ≡N (name type
equivalence) as:
(a) T ≡N T

(b) Given the declaration
Type T1 = T2;

 T1 ≡N T2

We treat anonymous types (types
not given a name) as an
abbreviation for an implicit
declaration of a new and unique
type name.
Thus
 int A[10];

is an abbreviation for
 Type Tnew = int[10];

 Tnew A;

94CS 538 Spring 2008©

Structural Equivalence
An alternative notion of type
equivalence is structural
equivalence (denoted ≡S).
Roughly, two types are
structurally equivalent if the two
types have the same definition,
independent of where the
definitions are located. That is,
the two types have the same
definitional structure.
Formally,
 (a) T ≡S T

 (b) Given the declaration
 Type T = Q;

 T ≡S Q

 (c) If T and Q are defined using
the same type constructor and
corresponding parameters in the

95CS 538 Spring 2008©

two definitions are equal or
structurally equivalent
then T ≡S Q

Returning to our previous
example,
 type PackerSalaries = int[100];

 type AssemblySizes = int[100];
 PackerSalaries salary;
 AssemblySizes size;

salary ≡S size since both are
arrays and 100=100 and int ≡S
int.

96CS 538 Spring 2008©

Which notion of Equivalence do
Programming Languages Use?

C and C++ use structural
equivalence except for structs
and classes (where name
equivalence is used). For arrays,
size is ignored.
Java uses structural equivalence
for scalars. For arrays, it requires
name equivalence for the
component type, ignoring size.
For classes it uses name
equivalence except that a subtype
may be used where a parent type
is expected. Thus given
 void subr(Object O) { ... };

the call
subr(new Integer(100));

is OK since Integer is a subclass of
Object.

97CS 538 Spring 2008©

Automatic Type Conversions
C, C++ and Java also allow various
kinds of automatic type
conversions.
In C, C++ and Java, a float will
be automatically created from an
int:
 float f = 10; // No type error

Also, an integer type (char,
short, int, long) will be
widened:
 int i = 'x';

In C and C++ (but not Java), an
integer value can also be
narrowed, possibly with the loss
of significant bits:
 char c = 1000000;

