
87CS 538 Spring 2008©

Eager Parameter Evaluation
Sometimes we want parameters
evaluated eagerly—as soon as
they are known.
Consider a sorting routine that
breaks an array in half, sorts
each half, and then merges
together the two sorted halves
(this is a merge sort).
In outline form it is:
sort(inputArray) {
 ...
merge(sort(leftHalf(inputArray)),
 sort(rightHalf(inputArray)));}

This definition lends itself
nicely to parallel evaluation:
The two halves of an input
array can be sorted in parallel.
Each of these two halves can

88CS 538 Spring 2008©

again be split in two, allowing
parallel sorting of four quarter-
sized arrays, then leading to 8
sorts of 1/8 sized arrays, etc.
But,
to make this all work, the two
parameters to merge must be
evaluated eagerly, rather than
in sequence.

89CS 538 Spring 2008©

Type Equivalence
Programming languages use
types to describe the values a
data object may hold and the
operations that may be
performed.
By checking the types of values,
potential errors in expressions,
assignments and calls may be
automatically detected. For
example, type checking tells us
that
123 + "123"

is illegal because addition is not
defined for an integer, string
combination.
Type checking is usually done at
compile-time; this is static typing.

90CS 538 Spring 2008©

Type-checking may also be done
at run-time; this is dynamic
typing.
A program is type-safe if it is
impossible to apply an operation
to a value of the wrong type. In a
type-safe language, plus is never
told to add an integer to a string,
because its definition does not
allow that combination of
operands. In type-safe programs
an operator can still see an illegal
value (e.g., a division by zero),
but it can’t see operands of the
wrong type.
A strongly-typed programming
language forbids the execution of
type-unsafe programs.
Weakly-typed programming
languages allow the execution of
potentially type-unsafe programs.

91CS 538 Spring 2008©

The question reduces to whether
the programming language allows
programmers to “break” the type
rules, either knowingly or
unknowingly.
Java is strongly typed; type errors
preclude execution. C and C++
are weakly typed; you can break
the rules if you wish. For
example:
 int i; int* p;

 p = (int *) i * i;

Now p may be used as an integer
pointer though multiplication
need not produce valid integer
pointers.
If we are going to do type
checking in a program, we must
decide whether two types, T1 and
T2 are equivalent; that is, whether
they be used interchangeably.

92CS 538 Spring 2008©

There are two major approaches
to type equivalence:
Name Equivalence:
Two types are equivalent if and
only if they refer to exactly the
same type declaration.
For example,
type PackerSalaries = int[100];

 type AssemblySizes = int[100];
 PackerSalaries salary;
 AssemblySizes size;

Is
sal = size;

allowed?
Using name equivalence, no. That
is, salary /≡N size since these
two variables have different type
declarations (that happen to be
identical in structure).

93CS 538 Spring 2008©

Formally, we define ≡N (name type
equivalence) as:
(a) T ≡N T

(b) Given the declaration
Type T1 = T2;

 T1 ≡N T2

We treat anonymous types (types
not given a name) as an
abbreviation for an implicit
declaration of a new and unique
type name.
Thus
 int A[10];

is an abbreviation for
 Type Tnew = int[10];

 Tnew A;

94CS 538 Spring 2008©

Structural Equivalence
An alternative notion of type
equivalence is structural
equivalence (denoted ≡S).
Roughly, two types are
structurally equivalent if the two
types have the same definition,
independent of where the
definitions are located. That is,
the two types have the same
definitional structure.
Formally,
 (a) T ≡S T

 (b) Given the declaration
 Type T = Q;

 T ≡S Q

 (c) If T and Q are defined using
the same type constructor and
corresponding parameters in the

95CS 538 Spring 2008©

two definitions are equal or
structurally equivalent
then T ≡S Q

Returning to our previous
example,
 type PackerSalaries = int[100];

 type AssemblySizes = int[100];
 PackerSalaries salary;
 AssemblySizes size;

salary ≡S size since both are
arrays and 100=100 and int ≡S
int.

96CS 538 Spring 2008©

Which notion of Equivalence do
Programming Languages Use?

C and C++ use structural
equivalence except for structs
and classes (where name
equivalence is used). For arrays,
size is ignored.
Java uses structural equivalence
for scalars. For arrays, it requires
name equivalence for the
component type, ignoring size.
For classes it uses name
equivalence except that a subtype
may be used where a parent type
is expected. Thus given
 void subr(Object O) { ... };

the call
subr(new Integer(100));

is OK since Integer is a subclass of
Object.

97CS 538 Spring 2008©

Automatic Type Conversions
C, C++ and Java also allow various
kinds of automatic type
conversions.
In C, C++ and Java, a float will
be automatically created from an
int:
 float f = 10; // No type error

Also, an integer type (char,
short, int, long) will be
widened:
 int i = 'x';

In C and C++ (but not Java), an
integer value can also be
narrowed, possibly with the loss
of significant bits:
 char c = 1000000;

98CS 538 Spring 2008©

Reading Assignment
• An Introduction to Scheme for C

Programmers
 (linked from class web page)

• The Scheme Language Definition
 (linked from class web page)

99CS 538 Spring 2008©

Lisp & Scheme
Lisp (List Processing Language)
is one of the oldest
programming languages still in
wide use.
It was developed in the late 50s
and early 60s by John
McCarthy.
Its innovations include:
• Support of symbolic computations.

• A functional programming style
without emphasis on assignments
and side-effects.

• A naturally recursive programming
style.

• Dynamic (run-time) type checking.

100CS 538 Spring 2008©

• Dynamic data structures (lists,
binary trees) that grow without
limit.

• Automatic garbage collection to
manage memory.

• Functions are treated as “first class”
values; they may be passed as
arguments, returned as result
values, stored in data structures,
and created during execution.

• A formal semantics (written in Lisp)
that defines the meaning of all
valid programs.

• An Integrated Programming
Environment to create, edit and
test Lisp programs.

101CS 538 Spring 2008©

Scheme
Scheme is a recent dialect of
Lisp.
It uses lexical (static) scoping.
It supports true first-class
functions.
It provides program-level
access to control flow via
continuation functions.

102CS 538 Spring 2008©

Atomic (Primitive) Data Types
Symbols:
Essentially the same form as
identifiers. Similar to enumeration
values in C and C++.
Very flexible in structure;
essentially any sequence of
printable characters is allowed;
anything that starts a valid
number (except + or -) may not
start a symbol.
Valid symbols include:

abc hello-world + <=!

Integers:
Any sequence of digits, optionally
prefixed with a + or -. Usually
unlimited in length.

103CS 538 Spring 2008©

Reals:
A floating point number in a
decimal format (123.456) or in
exponential format (1.23e45). A
leading sign and a signed
exponent are allowed
(-12.3, 10.0e-20).
Rationals:
Rational numbers of the form
integer/integer (e.g., 1/3 or 9/7)
with an optional leading sign (-1/
2, +7/8).
Complex:
Complex numbers of the form
num+num i or num-num i, where
num is an integer or real number.
Example include 1+3i, -1.5-
2.5i, 0+1i).

104CS 538 Spring 2008©

String:
A sequence of characters
delimited by double quotes.
Double quotes and backslashes
must be escaped using a
backslash. For example
"Hello World" "\"Wow!\""

Character:
A single character prefixed by #\.
For example, #\a, #\0, #\\, #\#.
Two special characters are
#\space and #\newline.

Boolean:
True is represented as #t and
false is represented as #f.

105CS 538 Spring 2008©

Binary Trees
Binary trees are also called
S-Expressions in Lisp and Scheme.
They are of the form
 (item . item)
where item is any atomic value or
any S-Expression. For example:

 (A . B)
 (1.2 . "xyz")
 ((A . B) . C)
 (A . (B . C))

S-Expressions are linearizations of
binary trees:

A B 1.2 "xyz"

106CS 538 Spring 2008©

S-Expressions are built and
accessed using the predefined
functions cons, car and cdr.
cons builds a new S-Expression
from two S-Expressions that
represent the left and right
children.
cons(E1,E2) = (E1 . E2)
car returns are left subtree of an
S-Expression.
car (E1 . E2) = E1
cdr returns are right subtree of an
S-Expression.
cdr (E1 . E2) = E2

C A

A B B C

107CS 538 Spring 2008©

Lists
In Lisp and Scheme lists are a
special, widely-used form of S-
Expressions.
() represents the empty or null list
(A) is the list containing A.
By definition, (A) ≡ (A . ())

(A B) represents the list
containing A and B. By definition,
(A B) ≡ (A . (B . ()))

In general, (A B C ... Z) ≡
(A . (B . (C (Z . ()) ...)))

(A B C)≡

A

B

C ()

108CS 538 Spring 2008©

Function Calls
In List and Scheme, function calls
are represented as lists.
(A B C) means:
Evaluate A (to a function)
Evaluate B and C (as parameters)
Call A with B and C as its
parameters
Use the value returned by the call
as the “meaning” of (A B C).
cons, car and cdr are predefined
symbols bound to built-in
functions that build and access
lists and S-Expressions.
Literals (of type integer, real,
rational, complex, string,
character and boolean) evaluate
to themselves.

109CS 538 Spring 2008©

For example (⇒ means “evaluates
to”)
(cons 1 2) ⇒ (1 . 2)

(cons 1 ()) ⇒ (1)

(car (cons 1 2)) ⇒ 1

(cdr (cons 1 ())) ⇒ ()

But,
(car (1 2)) fails during

execution!
Why?
The expression (1 2) looks like a
call, but 1 isn’t a function! We
need some way to “quote”
symbols and lists we don’t want
evaluated.
(quote arg)

is a special function that returns
its argument unevaluated.

110CS 538 Spring 2008©

Thus (quote (1 2)) doesn’t try
to evaluate the list (1 2); it just
returns it.
Since quotation is so often used,
it may be abbreviated using a
single quote. That is
(quote arg) ≡ 'arg

Thus
(car '(a b c)) ⇒ a

(cdr '((A) (B) (C))) ⇒
((B) (C))

(cons 'a '1) ⇒ (a . 1)

But,
('cdr '(A B)) fails!

Why?

111CS 538 Spring 2008©

User-defined Functions
The list
(lambda (args) (body))

evaluates to a function with
(args) as its argument list and
(body) as the function body.
No quotes are needed for
(args) or (body).
Thus
(lambda (x) (+ x 1)) evaluates
to the increment function.
Similarly,
((lambda (x) (+ x 1)) 10) ⇒
11

112CS 538 Spring 2008©

We can bind values and
functions to global symbols
using the define function.
The general form is
(define id object)

id is not evaluated but object
is. id is bound to the value
object evaluates to.
For example,
(define pi 3.1415926535)

(define plus1
 (lambda (x) (+ x 1)))

(define pi*2 (* pi 2))

Once a symbol is defined, it
evaluates to the value it is
bound to:
(plus1 12) ⇒ 13

113CS 538 Spring 2008©

Since functions are frequently
defined, we may abbreviate
(define id
 (lambda (args) (body)))

as
(define (id args) (body))

Thus
(define (plus1 x) (+ x 1))

