
99CS 538 Spring 2008©

Lisp & Scheme
Lisp (List Processing Language)
is one of the oldest
programming languages still in
wide use.
It was developed in the late 50s
and early 60s by John
McCarthy.
Its innovations include:
• Support of symbolic computations.

• A functional programming style
without emphasis on assignments
and side-effects.

• A naturally recursive programming
style.

• Dynamic (run-time) type checking.

100CS 538 Spring 2008©

• Dynamic data structures (lists,
binary trees) that grow without
limit.

• Automatic garbage collection to
manage memory.

• Functions are treated as “first class”
values; they may be passed as
arguments, returned as result
values, stored in data structures,
and created during execution.

• A formal semantics (written in Lisp)
that defines the meaning of all
valid programs.

• An Integrated Programming
Environment to create, edit and
test Lisp programs.

101CS 538 Spring 2008©

Scheme
Scheme is a recent dialect of
Lisp.
It uses lexical (static) scoping.
It supports true first-class
functions.
It provides program-level
access to control flow via
continuation functions.

102CS 538 Spring 2008©

Atomic (Primitive) Data Types
Symbols:
Essentially the same form as
identifiers. Similar to enumeration
values in C and C++.
Very flexible in structure;
essentially any sequence of
printable characters is allowed;
anything that starts a valid
number (except + or -) may not
start a symbol.
Valid symbols include:

abc hello-world + <=!

Integers:
Any sequence of digits, optionally
prefixed with a + or -. Usually
unlimited in length.

103CS 538 Spring 2008©

Reals:
A floating point number in a
decimal format (123.456) or in
exponential format (1.23e45). A
leading sign and a signed
exponent are allowed
(-12.3, 10.0e-20).
Rationals:
Rational numbers of the form
integer/integer (e.g., 1/3 or 9/7)
with an optional leading sign (-1/
2, +7/8).
Complex:
Complex numbers of the form
num+num i or num-num i, where
num is an integer or real number.
Example include 1+3i, -1.5-
2.5i, 0+1i).

104CS 538 Spring 2008©

String:
A sequence of characters
delimited by double quotes.
Double quotes and backslashes
must be escaped using a
backslash. For example
"Hello World" "\"Wow!\""

Character:
A single character prefixed by #\.
For example, #\a, #\0, #\\, #\#.
Two special characters are
#\space and #\newline.

Boolean:
True is represented as #t and
false is represented as #f.

105CS 538 Spring 2008©

Binary Trees
Binary trees are also called
S-Expressions in Lisp and Scheme.
They are of the form
 (item . item)
where item is any atomic value or
any S-Expression. For example:

 (A . B)
 (1.2 . "xyz")
 ((A . B) . C)
 (A . (B . C))

S-Expressions are linearizations of
binary trees:

A B 1.2 "xyz"

106CS 538 Spring 2008©

S-Expressions are built and
accessed using the predefined
functions cons, car and cdr.
cons builds a new S-Expression
from two S-Expressions that
represent the left and right
children.
cons(E1,E2) = (E1 . E2)
car returns are left subtree of an
S-Expression.
car (E1 . E2) = E1
cdr returns are right subtree of an
S-Expression.
cdr (E1 . E2) = E2

C A

A B B C

107CS 538 Spring 2008©

Lists
In Lisp and Scheme lists are a
special, widely-used form of S-
Expressions.
() represents the empty or null list
(A) is the list containing A.
By definition, (A) ≡ (A . ())

(A B) represents the list
containing A and B. By definition,
(A B) ≡ (A . (B . ()))

In general, (A B C ... Z) ≡
(A . (B . (C (Z . ()) ...)))

(A B C)≡

A

B

C ()

108CS 538 Spring 2008©

Function Calls
In List and Scheme, function calls
are represented as lists.
(A B C) means:
Evaluate A (to a function)
Evaluate B and C (as parameters)
Call A with B and C as its
parameters
Use the value returned by the call
as the “meaning” of (A B C).
cons, car and cdr are predefined
symbols bound to built-in
functions that build and access
lists and S-Expressions.
Literals (of type integer, real,
rational, complex, string,
character and boolean) evaluate
to themselves.

109CS 538 Spring 2008©

For example (⇒ means “evaluates
to”)
(cons 1 2) ⇒ (1 . 2)

(cons 1 ()) ⇒ (1)

(car (cons 1 2)) ⇒ 1

(cdr (cons 1 ())) ⇒ ()

But,
(car (1 2)) fails during

execution!
Why?
The expression (1 2) looks like a
call, but 1 isn’t a function! We
need some way to “quote”
symbols and lists we don’t want
evaluated.
(quote arg)

is a special function that returns
its argument unevaluated.

110CS 538 Spring 2008©

Thus (quote (1 2)) doesn’t try
to evaluate the list (1 2); it just
returns it.
Since quotation is so often used,
it may be abbreviated using a
single quote. That is
(quote arg) ≡ 'arg

Thus
(car '(a b c)) ⇒ a

(cdr '((A) (B) (C))) ⇒
((B) (C))

(cons 'a '1) ⇒ (a . 1)

But,
('cdr '(A B)) fails!

Why?

111CS 538 Spring 2008©

User-defined Functions
The list
(lambda (args) (body))

evaluates to a function with
(args) as its argument list and
(body) as the function body.
No quotes are needed for
(args) or (body).
Thus
(lambda (x) (+ x 1)) evaluates
to the increment function.
Similarly,
((lambda (x) (+ x 1)) 10) ⇒
11

112CS 538 Spring 2008©

We can bind values and
functions to global symbols
using the define function.
The general form is
(define id object)

id is not evaluated but object
is. id is bound to the value
object evaluates to.
For example,
(define pi 3.1415926535)

(define plus1
 (lambda (x) (+ x 1)))

(define pi*2 (* pi 2))

Once a symbol is defined, it
evaluates to the value it is
bound to:
(plus1 12) ⇒ 13

113CS 538 Spring 2008©

Since functions are frequently
defined, we may abbreviate
(define id
 (lambda (args) (body)))

as
(define (id args) (body))

Thus
(define (plus1 x) (+ x 1))

114CS 538 Spring 2008©

Conditional Expressions in
Scheme

A predicate is a function that
returns a boolean value. By
convention, in Scheme, predicate
names end with “?”
For example,
 number? symbol? equal?
 null? list?

In conditionals, #f is false, and
everything else, including #t, is
true.
The if expression is
(if pred E1 E2)

First pred is evaluated.
Depending on its value (#f or
not), either E1 or E2 is evaluated
(but not both) and returned as the
value of the if expression.

115CS 538 Spring 2008©

For example,
(if (= 1 (+ 0 1))

 'Yes
 'No
)

(define
 (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1)))
)
)

116CS 538 Spring 2008©

Generalized Conditional
This is similar to a switch or case:
(cond
 (p1 e1)
 (p2 e2)
 ...
 (else en)
)

Each of the predicates (p1, p2, ...)
is evaluated until one is true (≠
#f). Then the corresponding
expression (e1, e2, ...) is
evaluated and returned as the
value of the cond. else acts like a
predicate that is always true.
Example:

(cond

 ((= a 1) 2)
 ((= a 2) 3)
 (else 4)
)

