
111CS 538 Spring 2008©

User-defined Functions
The list
(lambda (args) (body))

evaluates to a function with
(args) as its argument list and
(body) as the function body.
No quotes are needed for
(args) or (body).
Thus
(lambda (x) (+ x 1)) evaluates
to the increment function.
Similarly,
((lambda (x) (+ x 1)) 10) ⇒
11

112CS 538 Spring 2008©

We can bind values and
functions to global symbols
using the define function.
The general form is
(define id object)

id is not evaluated but object
is. id is bound to the value
object evaluates to.
For example,
(define pi 3.1415926535)

(define plus1
 (lambda (x) (+ x 1)))

(define pi*2 (* pi 2))

Once a symbol is defined, it
evaluates to the value it is
bound to:
(plus1 12) ⇒ 13

113CS 538 Spring 2008©

Since functions are frequently
defined, we may abbreviate
(define id
 (lambda (args) (body)))

as
(define (id args) (body))

Thus
(define (plus1 x) (+ x 1))

114CS 538 Spring 2008©

Conditional Expressions in
Scheme

A predicate is a function that
returns a boolean value. By
convention, in Scheme, predicate
names end with “?”
For example,
 number? symbol? equal?
 null? list?

In conditionals, #f is false, and
everything else, including #t, is
true.
The if expression is
(if pred E1 E2)

First pred is evaluated.
Depending on its value (#f or
not), either E1 or E2 is evaluated
(but not both) and returned as the
value of the if expression.

115CS 538 Spring 2008©

For example,
(if (= 1 (+ 0 1))

 'Yes
 'No
)

(define
 (fact n)
 (if (= n 0)
 1
 (* n (fact (- n 1)))
)
)

116CS 538 Spring 2008©

Generalized Conditional
This is similar to a switch or case:
(cond
 (p1 e1)
 (p2 e2)
 ...
 (else en)
)

Each of the predicates (p1, p2, ...)
is evaluated until one is true (≠
#f). Then the corresponding
expression (e1, e2, ...) is
evaluated and returned as the
value of the cond. else acts like a
predicate that is always true.
Example:

(cond

 ((= a 1) 2)
 ((= a 2) 3)
 (else 4)
)

117CS 538 Spring 2008©

Recursion in Scheme
Recursion is widely used in
Scheme and most other functional
programming languages.
Rather than using a loop to step
through the elements of a list or
array, recursion breaks a problem
on a large data structure into a
simpler problem on a smaller data
structure.
A good example of this approach
is the append function, which
joins (or appends) two lists into
one larger list containing all the
elements of the two input lists (in
the correct order).
Note that cons is not append.
cons adds one element to the
head of an existing list.

118CS 538 Spring 2008©

Thus
(cons '(a b) '(c d)) ⇒
 ((a b) c d)
(append '(a b) '(c d)) ⇒
 (a b c d)

The append function is predefined
in Scheme, as are many other
useful list-manipulating functions
(consult the Scheme definition for
what’s available).
It is instructive to define append
directly to see its recursive
approach:
(define
 (append L1 L2)
 (if (null? L1)
 L2
 (cons (car L1)
 (append (cdr L1) L2))
)
)

119CS 538 Spring 2008©

Let’s trace (append '(a b) '(c d))

Our definition is
(define
 (append L1 L2)
 (if (null? L1)
 L2
 (cons (car L1)
 (append (cdr L1) L2))
)
)

Now L1 = (a b) and L2 = (c d).
(null? L1) is false, so we
evaluate
(cons (car L1) (append (cdr L1) L2))
= (cons (car '(a b))

(append (cdr '(a b)) '(c d)))
= (cons 'a (append '(b) '(c d))

We need to evaluate
 (append '(b) '(c d))

In this call, L1 = (b) and L2 = (c d).
L1 is not null, so we evaluate

120CS 538 Spring 2008©

(cons (car L1) (append (cdr L1) L2))
= (cons (car '(b))
 (append (cdr '(b)) '(c d)))

= (cons 'b (append '() '(c d))

We need to evaluate
 (append '() '(c d))

In this call, L1 = () and L2 = (c d).
L1 is null, so we return (c d).
Therefore
(cons 'b (append '() '(c d)) =
(cons 'b '(c d)) = (b c d) =
(append '(b) '(c d))

Finally,
(append '(a b) '(c d)) =
(cons 'a (append '(b) '(c d)) =

(cons 'a '(b c d)) = (a b c d)

Note:
Source files for append, and other
Scheme examples, are in
~cs538-1/public/scheme/example1.scm,
~cs538-1/public/scheme/example2.scm,
etc.

121CS 538 Spring 2008©

Reversing a List
Another useful list-manipulation
function is rev, which reverses
the members of a list. That is, the
last element becomes the first
element, the next-to-last element
becomes the second element, etc.
For example,
(rev '(1 2 3)) ⇒ (3 2 1)

The definition of rev is
straightforward:
(define (rev L)
 (if (null? L)
 L
 (append (rev (cdr L))

(list (car L))
)
)
)

122CS 538 Spring 2008©

As an example, consider
(rev '(1 2))

Here L = (1 2). L is not null so we
evaluate
(append (rev (cdr L))
 (list (car L))) =
(append (rev (cdr '(1 2)))
 (list (car '(1 2)))) =

(append (rev '(2)) (list 1)) =
(append (rev '(2)) '(1))

We must evaluate (rev '(2))

Here L = (2). L is not null so we
evaluate
(append (rev (cdr L))
 (list (car L))) =

(append (rev (cdr '(2)))
 (list (car '(2)))) =
(append (rev ())(list 2)) =
(append (rev ())'(2))

We must evaluate (rev '())

Here L = (). L is null so
 (rev '())= ()

123CS 538 Spring 2008©

Thus (append (rev ())'(2)) =
(append () '(2)) = (2) = (rev '(2))

Finally, recall (rev '(1 2)) =
(append (rev '(2)) '(1)) =
(append '(2) '(1)) = (2 1)

As constructed, rev only reverses
the “top level” elements of a list.
That is, members of a list that
themselves are lists aren’t
reversed.
For example,
 (rev '((1 2) (3 4))) =
 ((3 4) (1 2))

We can generalize rev to also
reverse list members that happen
to be lists.
To do this, it will be convenient to
use Scheme’s let construct.

124CS 538 Spring 2008©

The Let Construct
Scheme allows us to create local
names, bound to values, for use
in an expression.
The structure is
(let ((id1 val1) (id2 val2) ...)
 expr)

In this construct, val1 is
evaluated and bound to id1,
which will exist only within this
let expression. If id1 is already
defined (as a global or parameter
name) the existing definition is
hidden and the local definition,
bound to val1, is used. Then
val2 is evaluated and bound to
id2, Finally, expr is evaluated
in a scope that includes id1, id2,
...

125CS 538 Spring 2008©

For example,
(let ((a 10) (b 20))

 (+ a b)) ⇒ 30

Using a let, the definition of
revall, a version of rev that
reverses all levels of a list, is easy:

(define (revall L)

 (if (null? L)
 L
 (let ((E (if (list? (car L))
 (revall (car L))
 (car L))))
 (append (revall (cdr L))

(list E))
)
)
)

(revall '((1 2) (3 4))) ⇒
 ((4 3) (2 1))

126CS 538 Spring 2008©

Subsets
Another good example of
Scheme’s recursive style of
programming is subset
computation.
Given a list of distinct atoms, we
want to compute a list of all
subsets of the list values.
For example,
(subsets '(1 2 3)) ⇒
 (() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3))

The order of atoms and sublists is
unimportant, but all possible
subsets of the list values must be
included.
Given Scheme’s recursive style of
programming, we need a
recursive definition of subsets.

127CS 538 Spring 2008©

That is, if we have a list of all
subsets of n atoms, how do we
extend this list to one containing
all subsets of n+1 values?
First, we note that the number of
subsets of n+1 values is exactly
twice the number of subsets of n
values.
For example,
(subsets '(1 2)) ⇒
(() (1) (2) (1 2)), which

contains 4 subsets.
(subsets '(1 2 3)) contains 8
subsets (as we saw earlier).
Moreover, the extended list (of
subsets for n+1 values) is simply
the list of subsets for n values
plus the result of “distributing”
the new value into each of the
original subsets.

128CS 538 Spring 2008©

Thus (subsets '(1 2 3)) ⇒
(() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3)) =
(() (1) (2) (1 2)) plus

((3) (1 3) (2 3) (1 2 3))

This insight leads to a concise
program for subsets.
We will let (distrib L E) be a
function that “distributes” E into
each list in L.
For example,
(distrib '(() (1) (2) (1 2)) 3) =

((3) (3 1) (3 2) (3 1 2))

(define (distrib L E)
 (if (null? L)
 ()
 (cons (cons E (car L))
 (distrib (cdr L) E))
)
)

129CS 538 Spring 2008©

We will let (extend L E) extend a
list L by distributing element E
through L and then appending
this result to L.
For example,
(extend '(() (a)) 'b) ⇒
 (() (a) (b) (b a))

(define (extend L E)
 (append L (distrib L E))
)

Now subsets is easy:

(define (subsets L)

 (if (null? L)
 (list ())
 (extend (subsets (cdr L))

(car L))
)
)

