
124CS 538 Spring 2008©

The Let Construct
Scheme allows us to create local
names, bound to values, for use
in an expression.
The structure is
(let ((id1 val1) (id2 val2) ...)
 expr)

In this construct, val1 is
evaluated and bound to id1,
which will exist only within this
let expression. If id1 is already
defined (as a global or parameter
name) the existing definition is
hidden and the local definition,
bound to val1, is used. Then
val2 is evaluated and bound to
id2, Finally, expr is evaluated
in a scope that includes id1, id2,
...

125CS 538 Spring 2008©

For example,
(let ((a 10) (b 20))

 (+ a b)) ⇒ 30

Using a let, the definition of
revall, a version of rev that
reverses all levels of a list, is easy:

(define (revall L)

 (if (null? L)
 L
 (let ((E (if (list? (car L))
 (revall (car L))
 (car L))))
 (append (revall (cdr L))

(list E))
)
)
)

(revall '((1 2) (3 4))) ⇒
 ((4 3) (2 1))

126CS 538 Spring 2008©

Subsets
Another good example of
Scheme’s recursive style of
programming is subset
computation.
Given a list of distinct atoms, we
want to compute a list of all
subsets of the list values.
For example,
(subsets '(1 2 3)) ⇒
 (() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3))

The order of atoms and sublists is
unimportant, but all possible
subsets of the list values must be
included.
Given Scheme’s recursive style of
programming, we need a
recursive definition of subsets.

127CS 538 Spring 2008©

That is, if we have a list of all
subsets of n atoms, how do we
extend this list to one containing
all subsets of n+1 values?
First, we note that the number of
subsets of n+1 values is exactly
twice the number of subsets of n
values.
For example,
(subsets '(1 2)) ⇒
(() (1) (2) (1 2)), which

contains 4 subsets.
(subsets '(1 2 3)) contains 8
subsets (as we saw earlier).
Moreover, the extended list (of
subsets for n+1 values) is simply
the list of subsets for n values
plus the result of “distributing”
the new value into each of the
original subsets.

128CS 538 Spring 2008©

Thus (subsets '(1 2 3)) ⇒
(() (1) (2) (3) (1 2) (1 3)
 (2 3) (1 2 3)) =
(() (1) (2) (1 2)) plus

((3) (1 3) (2 3) (1 2 3))

This insight leads to a concise
program for subsets.
We will let (distrib L E) be a
function that “distributes” E into
each list in L.
For example,
(distrib '(() (1) (2) (1 2)) 3) =

((3) (3 1) (3 2) (3 1 2))

(define (distrib L E)
 (if (null? L)
 ()
 (cons (cons E (car L))
 (distrib (cdr L) E))
)
)

129CS 538 Spring 2008©

We will let (extend L E) extend a
list L by distributing element E
through L and then appending
this result to L.
For example,
(extend '(() (a)) 'b) ⇒
 (() (a) (b) (b a))

(define (extend L E)
 (append L (distrib L E))
)

Now subsets is easy:

(define (subsets L)

 (if (null? L)
 (list ())
 (extend (subsets (cdr L))

(car L))
)
)

130CS 538 Spring 2008©

Data Structures in Scheme
In Scheme, lists and S-expressions
are basic. Arrays can be simulated
using lists, but access to elements
“deep” in the list can be slow
(since a list is a linked structure).
To access an element deep within
a list we can use:
• (list-tail L k)

This returns list L after removing
the first k elements. For example,
(list-tail '(1 2 3 4 5) 2) ⇒
(3 4 5)

• (list-ref L k)
This returns the k-th element in L
(counting from 0). For example,
(list-ref '(1 2 3 4 5) 2) ⇒ 3

131CS 538 Spring 2008©

Vectors in Scheme
Scheme provides a vector type
that directly implements one
dimensional arrays.
Literals are of the form #(...)
For example, #(1 2 3) or
#(1 2.0 "three")

The function (vector? val)
tests whether val is a vector or
not.
(vector? 'abc) ⇒ #f

(vector? '(a b c)) ⇒ #f

(vector? #(a b c)) ⇒ #t

The function (vector v1 v2
...) evaluates v1, v2, ... and puts
them into a vector.
(vector 1 2 3) ⇒ #(1 2 3)

132CS 538 Spring 2008©

The function (make-vector k val)

creates a vector composed of k
copies of val. Thus
(make-vector 4 (/ 1 2)) ⇒
 #(1/2 1/2 1/2 1/2)

The function (vector-ref vect k)
returns the k-th element of vect,
starting at position 0. It is
essentially the same as vect[k]
in C or Java. For example,
(vector-ref #(2 4 6 8 10) 3) ⇒ 8

The function
(vector-set! vect k val) sets
the k-th element of vect, starting
at position 0, to be val. It is
essentially the same as
vect[k]=val in C or Java. The
value returned by the function is
unspecified. The suffix “!” in set!
indicates that the function has a
side-effect.

133CS 538 Spring 2008©

For example,
(define v #(1 2 3 4 5))
(vector-set! v 2 0)
v ⇒ #(1 2 0 4 5)

Vectors aren’t lists (and lists
aren’t vectors).
Thus (car #(1 2 3)) doesn’t
work.
There are conversion routines:
• (vector->list V) converts

vector V to a list containing the
same values as V. For example,
(vector->list #(1 2 3)) ⇒
 (1 2 3)

• (list->vector L) converts list L
to a vector containing the same
values as L. For example,
(list->vector '(1 2 3)) ⇒
#(1 2 3)

134CS 538 Spring 2008©

• In general Scheme names a
conversion function from type T to
type Q as T->Q. For example,
string->list converts a string
into a list containing the
characters in the string.

135CS 538 Spring 2008©

Records and Structs
In Scheme we can represent a
record, struct, or class object as
an association list of the form
((obj1 val1) (obj2 val2) ...)

In the association list, which is a
list of (object value) sublists,
object serves as a “key” to locate
the desired sublist.
For example, the association list
((A 10) (B 20) (C 30))

serves the same role as
struct

 { int a = 10;
 int b = 20;
 int c = 30;}

136CS 538 Spring 2008©

The predefined Scheme function
(assoc obj alist)

checks alist (an association list)
to see if it contains a sublist with
obj as its head. If it does, the list
starting with obj is returned;
otherwise #f (indicating failure) is
returned.
For example,
(define L
 '((a 10) (b 20) (c 30)))

(assoc 'a L) ⇒ (a 10)

(assoc 'b L) ⇒ (b 20)

(assoc 'x L) ⇒ #f

137CS 538 Spring 2008©

We can use non-atomic objects as
keys too!
(define price-list

 '(((bmw m5) 71095)

 ((bmw z4) 40495)

 ((jag xj8) 56975)

 ((mb sl500) 86655)

)

)

(assoc '(bmw z4) price-list)
⇒ ((bmw z4) 40495)

138CS 538 Spring 2008©

Using assoc, we can easily define
a structure function:
(structure key alist) will
return the value associated with
key in alist; in C or Java
notation, it returns alist.key.
(define
 (structure key alist)
 (if (assoc key alist)

(car (cdr (assoc key alist)))
 #f
)
)

We can improve this function in
two ways:
• The same call to assoc is made

twice; we can save the value
computed by using a let
expression.

• Often combinations of car and cdr
are needed to extract a value.

139CS 538 Spring 2008©

Scheme has a number of
predefined functions that combine
several calls to car and cdr into
one function. For example,
(caar x) ≡ (car (car x))
(cadr x) ≡ (car (cdr x))
(cdar x) ≡ (cdr (car x))
(cddr x) ≡ (cdr (cdr x))

Using these two insights we can
now define a better version of
structure

(define
 (structure key alist)
 (let ((p (assoc key alist)))
 (if p
 (cadr p)
 #f
)
)
)

140CS 538 Spring 2008©

What does assoc do if more than
one sublist with the same key
exists?
It returns the first sublist with a
matching key. In fact, this
property can be used to make a
simple and fast function that
updates association lists:
(define
 (set-structure key alist val)
 (cons (list key val) alist)
)

141CS 538 Spring 2008©

If we want to be more space-
efficient, we can create a version
that updates the internal structure
of an association list, using
set-cdr! which changes the cdr
value of a list:
(define
 (set-structure! key alist val)
 (let ((p (assoc key alist)))
 (if p
 (begin
 (set-cdr! p (list val))
 alist
)
 (cons (list key val) alist)
)
)
)

