
130CS 538 Spring 2008©

Data Structures in Scheme
In Scheme, lists and S-expressions
are basic. Arrays can be simulated
using lists, but access to elements
“deep” in the list can be slow
(since a list is a linked structure).
To access an element deep within
a list we can use:
• (list-tail L k)

This returns list L after removing
the first k elements. For example,
(list-tail '(1 2 3 4 5) 2) ⇒
(3 4 5)

• (list-ref L k)
This returns the k-th element in L
(counting from 0). For example,
(list-ref '(1 2 3 4 5) 2) ⇒ 3

131CS 538 Spring 2008©

Vectors in Scheme
Scheme provides a vector type
that directly implements one
dimensional arrays.
Literals are of the form #(...)
For example, #(1 2 3) or
#(1 2.0 "three")

The function (vector? val)
tests whether val is a vector or
not.
(vector? 'abc) ⇒ #f

(vector? '(a b c)) ⇒ #f

(vector? #(a b c)) ⇒ #t

The function (vector v1 v2
...) evaluates v1, v2, ... and puts
them into a vector.
(vector 1 2 3) ⇒ #(1 2 3)

132CS 538 Spring 2008©

The function (make-vector k val)

creates a vector composed of k
copies of val. Thus
(make-vector 4 (/ 1 2)) ⇒
 #(1/2 1/2 1/2 1/2)

The function (vector-ref vect k)
returns the k-th element of vect,
starting at position 0. It is
essentially the same as vect[k]
in C or Java. For example,
(vector-ref #(2 4 6 8 10) 3) ⇒ 8

The function
(vector-set! vect k val) sets
the k-th element of vect, starting
at position 0, to be val. It is
essentially the same as
vect[k]=val in C or Java. The
value returned by the function is
unspecified. The suffix “!” in set!
indicates that the function has a
side-effect.

133CS 538 Spring 2008©

For example,
(define v #(1 2 3 4 5))
(vector-set! v 2 0)
v ⇒ #(1 2 0 4 5)

Vectors aren’t lists (and lists
aren’t vectors).
Thus (car #(1 2 3)) doesn’t
work.
There are conversion routines:
• (vector->list V) converts

vector V to a list containing the
same values as V. For example,
(vector->list #(1 2 3)) ⇒
 (1 2 3)

• (list->vector L) converts list L
to a vector containing the same
values as L. For example,
(list->vector '(1 2 3)) ⇒
#(1 2 3)

134CS 538 Spring 2008©

• In general Scheme names a
conversion function from type T to
type Q as T->Q. For example,
string->list converts a string
into a list containing the
characters in the string.

135CS 538 Spring 2008©

Records and Structs
In Scheme we can represent a
record, struct, or class object as
an association list of the form
((obj1 val1) (obj2 val2) ...)

In the association list, which is a
list of (object value) sublists,
object serves as a “key” to locate
the desired sublist.
For example, the association list
((A 10) (B 20) (C 30))

serves the same role as
struct

 { int a = 10;
 int b = 20;
 int c = 30;}

136CS 538 Spring 2008©

The predefined Scheme function
(assoc obj alist)

checks alist (an association list)
to see if it contains a sublist with
obj as its head. If it does, the list
starting with obj is returned;
otherwise #f (indicating failure) is
returned.
For example,
(define L
 '((a 10) (b 20) (c 30)))

(assoc 'a L) ⇒ (a 10)

(assoc 'b L) ⇒ (b 20)

(assoc 'x L) ⇒ #f

137CS 538 Spring 2008©

We can use non-atomic objects as
keys too!
(define price-list

 '(((bmw m5) 71095)

 ((bmw z4) 40495)

 ((jag xj8) 56975)

 ((mb sl500) 86655)

)

)

(assoc '(bmw z4) price-list)
⇒ ((bmw z4) 40495)

138CS 538 Spring 2008©

Using assoc, we can easily define
a structure function:
(structure key alist) will
return the value associated with
key in alist; in C or Java
notation, it returns alist.key.
(define
 (structure key alist)
 (if (assoc key alist)

(car (cdr (assoc key alist)))
 #f
)
)

We can improve this function in
two ways:
• The same call to assoc is made

twice; we can save the value
computed by using a let
expression.

• Often combinations of car and cdr
are needed to extract a value.

139CS 538 Spring 2008©

Scheme has a number of
predefined functions that combine
several calls to car and cdr into
one function. For example,
(caar x) ≡ (car (car x))
(cadr x) ≡ (car (cdr x))
(cdar x) ≡ (cdr (car x))
(cddr x) ≡ (cdr (cdr x))

Using these two insights we can
now define a better version of
structure

(define
 (structure key alist)
 (let ((p (assoc key alist)))
 (if p
 (cadr p)
 #f
)
)
)

140CS 538 Spring 2008©

What does assoc do if more than
one sublist with the same key
exists?
It returns the first sublist with a
matching key. In fact, this
property can be used to make a
simple and fast function that
updates association lists:
(define
 (set-structure key alist val)
 (cons (list key val) alist)
)

141CS 538 Spring 2008©

If we want to be more space-
efficient, we can create a version
that updates the internal structure
of an association list, using
set-cdr! which changes the cdr
value of a list:
(define
 (set-structure! key alist val)
 (let ((p (assoc key alist)))
 (if p
 (begin
 (set-cdr! p (list val))
 alist
)
 (cons (list key val) alist)
)
)
)

142CS 538 Spring 2008©

Functions are First-class
Objects

Functions may be passed as
parameters, returned as the value
of a function call, stored in data
objects, etc.
This is a consequence of the fact
that
(lambda (args) (body))

evaluates to a function just as
(+ 1 1)

evaluates to an integer.

143CS 538 Spring 2008©

Scoping
In Scheme scoping is static
(lexical). This means that non-
local identifiers are bound to
containing lambda parameters, or
let values, or globally defined
values. For example,
(define (f x)
 (lambda (y) (+ x y)))

Function f takes one parameter,
x. It returns a function (of y), with
x in the returned function bound
to the value of x used when f was
called.
Thus
(f 10) ≡ (lambda (y) (+ 10 y))

 ((f 10) 12) ⇒ 22

144CS 538 Spring 2008©

Unbound symbols are assumed to
be globals; there is a run-time
error if an unbound global is
referenced. For example,
(define (p y) (+ x y))

(p 20) ; error -- x is unbound

(define x 10)

(p 20) ⇒ 30

We can use let bindings to create
private local variables for
functions:
(define F
 (let ((X 1))
 (lambda () X)
)
)

F is a function (of no arguments).
(F) calls F.
(define X 22)

(F) ⇒ 1;X used in F is private

145CS 538 Spring 2008©

We can encapsulate internal state
with a function by using private,
let-bound variables:
(define cnt
 (let ((I 0))
 (lambda ()

 (set! I (+ I 1)) I)
)
)

Now,
 (cnt) ⇒ 1

 (cnt) ⇒ 2

 (cnt) ⇒ 3

 etc.

146CS 538 Spring 2008©

Let Bindings can be Subtle
You must check to see if the let-
bound value is created when the
function is created or when it is
called.
Compare
(define cnt

 (let ((I 0))
 (lambda ()

(set! I (+ I 1)) I)
)
)
vs.
 (define reset
 (lambda ()
 (let ((I 0))

 (set! I (+ I 1)) I)
)
)
(reset) ⇒ 1, (reset) ⇒ 1, etc.

147CS 538 Spring 2008©

Simulating Class Objects
Using association lists and private
bound values, we can encapsulate
data and functions. This gives us
the effect of class objects.
(define (point x y)
 (list
 (list 'rect
 (lambda () (list x y)))
 (list 'polar
 (lambda ()
 (list
 (sqrt (+ (* x x) (* y y)))
 (atan (/ x y))
)
)
)
)
)

A call (point 1 1) creates an
association list of the form
((rect funct) (polar funct))

148CS 538 Spring 2008©

We can use structure to access
components:
(define p (point 1 1))

((structure 'rect p)) ⇒ (1 1)

((structure 'polar p)) ⇒

 ()2 π
4---

149CS 538 Spring 2008©

We can add new functionality by
just adding new (id function)
pairs to the association list.
(define (point x y)
 (list
 (list 'rect
 (lambda () (list x y)))
 (list 'polar
 (lambda ()
 (list
 (sqrt (+ (* x x) (* y y)))
 (atan (/ x y))
)))
 (list 'set-rect!
 (lambda (newx newy)
 (set! x newx)
 (set! y newy)
 (list x y)
))
 (list 'set-polar!
 (lambda (r theta)
 (set! x (* r (sin theta)))
 (set! y (* r (cos theta)))
 (list r theta)
))
))

150CS 538 Spring 2008©

Now we have
(define p (point 1 1))

((structure 'rect p)) ⇒ (1 1)

((structure 'polar p)) ⇒

 ()

((structure 'set-polar! p) 1 π/4)
⇒ (1 π/4)

 ((structure 'rect p)) ⇒

 ()

2 π
4---

1
2

------- 1
2

151CS 538 Spring 2008©

Limiting Access to Internal
Structure

We can improve upon our
association list approach by
returning a single function
(similar to a C++ or Java object)
rather than an explicit list of (id
function) pairs.
The function will take the name of
the desired operation as one of its
arguments.

152CS 538 Spring 2008©

First, let’s differentiate between
(define def1
 (let ((I 0))
 (lambda () (set! I (+ I 1)) I)
)
)

and
(define (def2)
 (let ((I 0))
 (lambda () (set! I (+ I 1)) I)
)
)

def1 is a zero argument function
that increments a local variable
and returns its updated value.
def2 is a a zero argument
function that generates a function
of zero arguments (that
increments a local variable and
returns its updated value). Each
call to def2 creates a different
function.

153CS 538 Spring 2008©

Stack Implemented as a
Function

(define (stack)
 (let ((s ()))
 (lambda (op . args) ; var # args
 (cond
 ((equal? op 'push!)

(set! s (cons (car args) s))
 (car s))
 ((equal? op 'pop!)
 (if (null? s)
 #f
 (let ((top (car s)))
 (set! s (cdr s))
 top)))
 ((equal? op 'empty?)
 (null? s))
 (else #f)
)
)
)
)

154CS 538 Spring 2008©

(define stk (stack));new empty stack

(stk 'push! 1) ⇒ 1 ;s = (1)

(stk 'push! 3) ⇒ 3 ;s = (3 1)

(stk 'push! 'x) ⇒ x ;s = (x 3 1)

(stk 'pop!) ⇒ x ;s = (3 1)

(stk 'empty?) ⇒ #f ;s = (3 1)

(stk 'dump) ⇒ #f ;s = (3 1)

