Data Structures in Scheme

In Scheme, lists and S-expressions are basic. Arrays can be simulated using lists, but access to elements "deep" in the list can be slow (since a list is a linked structure).

To access an element deep within a list we can use:

- `(list-tail L k)`
 This returns list L after removing the first k elements. For example,
 `(list-tail '(1 2 3 4 5) 2) ⇒ (3 4 5)`

- `(list-ref L k)`
 This returns the k-th element in L (counting from 0). For example,
 `(list-ref '(1 2 3 4 5) 2) ⇒ 3`

Vectors in Scheme

Scheme provides a vector type that directly implements one dimensional arrays.

Literals are of the form ` #(...)`

For example, ` #(1 2 3)` or ` #(1 2.0 "three")`

The function `(vector? val)` tests whether `val` is a vector or not.

`(vector? 'abc) ⇒ #f`

`(vector? '(a b c)) ⇒ #f`

`(vector? #(a b c)) ⇒ #t`

The function `(vector v1 v2 ...) evaluates v1, v2, ... and puts them into a vector.`

`(vector 1 2 3) ⇒ #(1 2 3)`

The function `(make-vector k val)` creates a vector composed of k copies of val. Thus

`(make-vector 4 (/ 1 2)) ⇒ #(1/2 1/2 1/2 1/2)`

The function `(vector-ref vect k)` returns the k-th element of vect, starting at position 0. It is essentially the same as `vect[k]` in C or Java. For example,

`(vector-ref #(2 4 6 8 10) 3) ⇒ 8`

The function `(vector-set! vect k val)` sets the k-th element of vect, starting at position 0, to be val. It is essentially the same as `vect[k]=val` in C or Java. The value returned by the function is unspecified. The suffix "!” in `set!` indicates that the function has a side-effect.

For example,

`(define v #(1 2 3 4 5))
(vector-set! v 2 0)
v ⇒ #(1 2 0 4 5)`

Vectors aren't lists (and lists aren't vectors).

Thus `(car #(1 2 3))` doesn't work.

There are conversion routines:

- `(vector->list V)` converts vector V to a list containing the same values as V. For example,
 `(vector->list #(1 2 3 4 5)) ⇒ (1 2 3)`

- `(list->vector L)` converts list L to a vector containing the same values as L. For example,
 `(list->vector '(1 2 3)) ⇒ #(1 2 3)`
In general Scheme names a conversion function from type T to type Q as T->Q. For example, string->list converts a string into a list containing the characters in the string.

Records and Structs

In Scheme we can represent a record, struct, or class object as an association list of the form

```scheme
((obj1 val1) (obj2 val2) ...)
```

In the association list, which is a list of (object value) sublists, object serves as a "key" to locate the desired sublist.

For example, the association list

```scheme
( (A 10) (B 20) (C 30) )
```

serves the same role as

```scheme
struct
  { int a = 10;
    int b = 20;
    int c = 30;}
```

The predefined Scheme function

```scheme
(assoc obj alist)
```

checks alist (an association list) to see if it contains a sublist with obj as its head. If it does, the list starting with obj is returned; otherwise #f (indicating failure) is returned.

For example,

```scheme
(define L
  '( (a 10) (b 20) (c 30) ) )
(assoc 'a L) ⇒ (a 10)
(assoc 'b L) ⇒ (b 20)
(assoc 'x L) ⇒ #f
```

We can use non-atomic objects as keys too!

```scheme
(define price-list
  '( (bmw m5) 71095)
    (bmw z4) 40495)
    (jag xj8) 56975)
    (mb sl500) 86655)
)
(assoc '(bmw z4) price-list)
⇒ ((bmw z4) 40495)
Using **assoc**, we can easily define a **structure** function:

\[
(structure \ key \ alist) \text{ will return the value associated with } \text{key in } \text{alist}; \text{ in C or Java notation, it returns } \text{alist.key}. \\
(\text{define} \\
(\text{structure} \ key \ alist) \\
(\text{if} \ (assoc \ key \ alist) \\
(\text{car} \ (\text{cdr} \ (assoc \ key \ alist))) \\
#f \\
) \\
)
\]

We can improve this function in two ways:

- The same call to **assoc** is made twice; we can save the value computed by using a **let** expression.
- Often combinations of **car** and **cdr** are needed to extract a value.

```scheme
(define (structure key alist)
 (let ((p (assoc key alist)))
 (if p
 (cadr p)
 #f))
)
```

What does **assoc** do if more than one sublist with the same key exists?

It returns the first sublist with a matching key. In fact, this property can be used to make a simple and fast function that updates association lists:

```scheme
(define (set-structure key alist val)
 (cons (list key val) alist))
```

If we want to be more space-efficient, we can create a version that updates the internal structure of an association list, using **set-cdr!** which changes the **cdr** value of a list:

```scheme
(define (set-structure! key alist val)
 (let ((p (assoc key alist)))
 (if p
 (begin
 (set-cdr! p (list val))
 alist)
 (cons (list key val) alist)))
)
```

Scheme has a number of predefined functions that combine several calls to **car** and **cdr** into one function. For example,

- \((\text{caar } x) \equiv (\text{car} \ (\text{car} \ x))\)
- \((\text{cadr } x) \equiv (\text{car} \ (\text{cdr} \ x))\)
- \((\text{cdar } x) \equiv (\text{cdr} \ (\text{car} \ x))\)
- \((\text{cddr } x) \equiv (\text{cdr} \ (\text{cdr} \ x))\)

Using these two insights we can now define a better version of **structure**:

```scheme
(define (structure key alist)
 (let ((p (assoc key alist)))
 (if p
 (cadr p)
 #f))
)
```
**Functions are First-class Objects**

Functions may be passed as parameters, returned as the value of a function call, stored in data objects, etc. This is a consequence of the fact that

\[(\text{lambda} \ (\text{args}) \ \text{(body)})\]

evaluates to a function just as

\[(+ \ 1 \ 1)\]

evaluates to an integer.

**Scoping**

In Scheme scoping is static (lexical). This means that non-local identifiers are bound to containing lambda parameters, or let values, or globally defined values. For example,

\[
(\text{define} \ (f \ x) \ (\text{lambda} \ (y) \ (+ \ x \ y)))
\]

Function \(f\) takes one parameter, \(x\). It returns a function (of \(y\)), with \(x\) in the returned function bound to the value of \(x\) used when \(f\) was called.

Thus

\[
(f \ 10) \equiv (\text{lambda} \ (y) \ (+ \ 10 \ y))
\]

\[((f \ 10) \ 12) \Rightarrow 22\]

Unbound symbols are assumed to be globals; there is a run-time error if an unbound global is referenced. For example,

\[
(\text{define} \ (p \ y) \ (+ \ x \ y))
\]

\[(p \ 20); \text{error} -- x \text{ is unbound}\]

\[(\text{define} \ x \ 10)\]

\[(p \ 20) \Rightarrow 30\]

We can use let bindings to create private local variables for functions:

\[
(\text{define} \ F \ (\text{let} \ ((X \ 1)) \ (\text{lambda} () \ X))\)
\]

\(F\) is a function (of no arguments). \(F\) calls \(F\).

\[(F) \Rightarrow 1; X \text{ used in } F \text{ is private}\]

We can *encapsulate* internal state with a function by using private, let-bound variables:

\[
(\text{define} \ cnt \ (\text{let} \ ((I \ 0)) \ (\text{lambda} () \ (\text{set!} \ I (+ \ I \ 1)) \ I))\)
\]

Now,

\[(cnt) \Rightarrow 1\]

\[(cnt) \Rightarrow 2\]

\[(cnt) \Rightarrow 3\]

etc.
**Let Bindings can be Subtle**

You must check to see if the let-bound value is created when the function is *created* or when it is *called*.

Compare

```scheme
(define cnt
 (let ((I 0))
 (lambda ()
 (set! I (+ I 1)) I))
)

VS.

(define reset
 (lambda ()
 (let ((I 0))
 (set! I (+ I 1)) I))
)

(reset) ⇒ 1, (reset) ⇒ 1, etc.
```

**Simulating Class Objects**

Using association lists and private bound values, we can *encapsulate* data and functions. This gives us the effect of class objects.

```scheme
(define (point x y)
 (list
 (list 'rect
 (lambda () (list x y)))
 (list 'polar
 (lambda ()
 (list
 (sqrt (+ (* x x) (* y y)))
 (atan (/ x y)))
))
)
)

A call (point 1 1) creates an association list of the form
((rect funct) (polar funct))
```

We can use `structure` to access components:

```scheme
(define p (point 1 1))

((structure 'rect p)) ⇒ (1 1)
((structure 'polar p)) ⇒ (√2 π 4)
```

We can add new functionality by just adding new *(id function)* pairs to the association list.

```scheme
(define (point x y)
 (list
 (list 'rect
 (lambda () (list x y)))
 (list 'polar
 (lambda ()
 (list
 (sqrt (+ (* x x) (* y y)))
 (atan (/ x y)))
))
 (list 'set-rect!
 (lambda (newx newy)
 (set! x newx)
 (set! y newy)
 (list x y))
)
 (list 'set-polar!
 (lambda (r theta)
 (set! x (* r (sin theta)))
 (set! y (* r (cos theta)))
 (list r theta))
))
)
```
Now we have
\[ (define \ p \ (point \ 1 \ 1)) \]
\[ (structure 'rect \ p) \Rightarrow (1 \ 1) \]
\[ (structure 'polar \ p) \Rightarrow \left( \sqrt{2}, \frac{\pi}{4} \right) \]
\[ ((structure 'set-polar! \ p) \ 1 \ \pi/4) \Rightarrow (1 \ \pi/4) \]
\[ (structure 'rect \ p) \Rightarrow \left( \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right) \]

**Limiting Access to Internal Structure**

We can improve upon our association list approach by returning a single function (similar to a C++ or Java object) rather than an explicit list of (id function) pairs.

The function will take the name of the desired operation as one of its arguments.

First, let's differentiate between

\[(define \ def1 \ (let \ ( (I \ 0) ) \ (lambda () (set! I (+ I 1)) I)) )\]

\[(define \ (def2) \ (let \ ( (I \ 0) ) \ (lambda () (set! I (+ I 1)) I)) )\]

**def1** is a zero argument function that increments a local variable and returns its updated value.

**def2** is a zero argument function that *generates* a function of zero arguments (that increments a local variable and returns its updated value). Each call to **def2** creates a *different* function.

**Stack Implemented as a Function**

\[(define \ (stack) \ (let \ ( (s \ ()) ) \ (lambda (op . args) ; var # args \ (cond \ ((equal? op 'push!) \ (set! s (cons (car args) s)) \ (car s)) \ ((equal? op 'pop!) \ (if (null? s) \ #f \ (let \ ( (top \ (car s)) ) \ (set! s (cdr s)) \ top ))) \ ((equal? op 'empty?) \ (null? s)) \ (else \ #f) \ ) \ ) \ ) \ ) \)

```scheme
(define (stack)
 (let ((s ()))
 (lambda (op . args) ; var # args
 (cond
 ((equal? op 'push!) (set! s (cons (car args) s)) (car s))
 ((equal? op 'pop!) (if (null? s) #f
 (let ((top (car s)))
 (set! s (cdr s))
 top)))
 ((equal? op 'empty?) (null? s))
 (else #f)
))
)
)
)```
(define stk (stack)); new empty stack
(stk 'push! 1) ⇒ 1 ; s = (1)
(stk 'push! 3) ⇒ 3 ; s = (3 1)
(stk 'push! 'x) ⇒ x ; s = (x 3 1)
(stk 'pop!) ⇒ x ; s = (3 1)
(stk 'empty?) ⇒ #f ; s = (3 1)
(stk 'dump) ⇒ #f ; s = (3 1)