
155CS 538 Spring 2008©

Higher-Order Functions
A higher-order function is a
function that takes a function as a
parameter or one that returns a
function as its result.
A very important (and useful)
higher-order function is map,
which applies a function to a list
of values and produces a list or
results:
(define (map f L)
 (if (null? L)
 ()
 (cons (f (car L))
 (map f (cdr L)))
)
)

Note: In Scheme’s built-in
implementation of map, the order
of function application is
unspecified.

156CS 538 Spring 2008©

(map sqrt '(1 2 3 4 5)) ⇒
 (1 1.414 1.732 2 2.236)

(map (lambda(x) (* x x))
 '(1 2 3 4 5)) ⇒
 (1 4 9 16 25)

Map may also be used with
multiple argument functions by
supplying more than one list of
arguments:
(map + '(1 2 3) '(4 5 6)) ⇒
 (5 7 9)

157CS 538 Spring 2008©

The Reduce Function
Another useful higher-order
function is reduce, which reduces
a list of values to a single value by
repeatedly applying a binary
function to the list values.
This function takes a binary
function, a list of data values, and
an identity value for the binary
function:
(define
 (reduce f L id)
 (if (null? L)
 id
 (f (car L)
 (reduce f (cdr L) id))
)
)

(reduce + '(1 2 3 4 5) 0) ⇒ 15
(reduce * '(1 2 4 6 8 10) 1) ⇒
3840

158CS 538 Spring 2008©

(reduce append
 '((1 2 3) (4 5 6) (7 8)) ())
⇒ (1 2 3 4 5 6 7 8)

(reduce expt '(2 2 2 2) 1) ⇒

= 65536

(reduce expt '(2 2 2 2 2) 1)
⇒ 265536

(string-length
 (number->string
(reduce expt '(2 2 2 2 2) 1)))

⇒ 19729 ; digits in 265536

22
22

159CS 538 Spring 2008©

Sharing vs. Copying
In languages without side-effects
an object can be copied by
copying a pointer (reference) to
the object; a complete new copy
of the object isn’t needed.
Hence in Scheme (define A B)
normally means

A B

160CS 538 Spring 2008©

But, if side-effects are possible we
may need to force a physical copy
of an object or structure:
(define (copy obj)

 (if (pair? obj)

 (cons (copy (car obj))
(copy (cdr obj)))

 obj

)
)

161CS 538 Spring 2008©

For example,
(define A '(1 2))

(define B (cons A A))

B = ((1 2) 1 2)

A B

1

2 ()

162CS 538 Spring 2008©

(set-car! (car B) 10)

B = ((10 2) 10 2)

(define C (cons (copy A) (copy A)))

A B

10

2 ()

C

10

2 ()

10

2 ()

163CS 538 Spring 2008©

(set-car! (car C) 20)

C = ((20 2) 10 2)

Similar concerns apply to
strings and vectors, because
their internal structure can be
changed.

C

20

2 ()

10

2 ()

164CS 538 Spring 2008©

Shallow & Deep Copying
A copy operation that copies a
pointer (or reference) rather than
the object itself is a shallow copy.
For example, In Java,
Object O1 = new Object();

Object O2 = new Object();

O1 = O2; // shallow copy

If the structure within an object is
physically copied, the operation is
a deep copy.
In Java, for objects that support
the clone operation,
O1 = O2.clone(); // deep copy

Even in Java’s deep copy (via the
clone() operation), objects
referenced from within an object
are shallow copied. Thus given

165CS 538 Spring 2008©

class List {

 int value;

 List next;

}

List L,M;

M = L.clone();

L.value and M.value are
independent, but L.next and
M.next refer to the same List
object.
A complete deep copy, that copies
all objects linked directly or
indirectly, is expensive and tricky
to implement.
(Consider a complete copy of a
circular linked list).

166CS 538 Spring 2008©

Equality Checking in Scheme
In Scheme = is used to test for
numeric equality (including
comparison of different numeric
types). Non-numeric arguments
cause a run-time error. Thus
(= 1 1) ⇒ #t

(= 1 1.0) ⇒ #t

(= 1 2/2) ⇒ #t

(= 1 1+0.0i) ⇒ #t

167CS 538 Spring 2008©

To compare non-numeric values,
we can use either:
pointer equivalence (do the two
operands point to the same
address in memory)
structural equivalence (do the two
operands point to structures with
the same size, shape and
components, even if they are in
different memory locations)
In general pointer equivalence is
faster but less accurate.

Scheme implements both kinds of
equivalence tests.
(eqv? obj1 obj2)

This tests if obj1 and obj2 are
the exact same object. This works
for atoms and pointers to the
same structure.

168CS 538 Spring 2008©

(equal? obj1 obj2)

This tests if obj1 and obj2 are
the same, component by
component. This works for
atoms, lists, vectors and strings.
(eqv? 1 1) ⇒ #t

(eqv? 1 (+ 0 1)) ⇒ #t

(eqv? 1/2 (- 1 1/2)) ⇒ #t

(eqv? (cons 1 2) (cons 1 2)) ⇒
#f

(eqv? "abc" "abc") ⇒ #f

(equal? 1 1) ⇒ #t

(equal? 1 (+ 0 1)) ⇒ #t

(equal? 1/2 (- 1 1/2)) ⇒ #t

(equal? (cons 1 2) (cons 1 2)) ⇒
#t

(equal? "abc" "abc") ⇒ #t

In general it is wise to use equal?
unless speed is a critical factor.

169CS 538 Spring 2008©

I/O in Scheme
Scheme has simple read and write
functions, directed to the“standard
in” and “standard out” files.
(read)

Reads a single Scheme object (an
atom, string, vector or list) from
the standard in file. No quoting is
needed.
(write obj)

Writes a single object, obj, to the
standard out file.
(display obj)

Writes obj to the standard out file
in a more readable format.
(Strings aren’t quoted, and
characters aren’t escaped.)
(newline)

Forces a new line on standard out
file.

170CS 538 Spring 2008©

 Ports
Ports are Scheme objects that
interface with systems files. I/O to
files is normally done through a
port object bound to a system
file.
(open-input-file "path to file")

This returns an input port
associated with the "path to
file" string (which is system
dependent). A run-time error is
signalled if "path to file"
specifies an illegal or inaccessible
file.
(read port)

Reads a single Scheme object (an
atom, string, vector or list) from
port, which must be an input
port object.

171CS 538 Spring 2008©

(eof-object? obj)

When the end of an input file is
reached, a special eof-object is
returned. eof-object? tests
whether an object is this special
end-of-file marker.
(open-output-file "path to file")

This returns an output port
associated with the "path to
file" string (which is system
dependent). A run-time error is
signalled if "path to file"
specifies an illegal or inaccessible
file.
(write obj port)

Writes a single object, obj, to the
output port specified by port.

172CS 538 Spring 2008©

(display obj port)

Writes obj to the output port
specified by port. display uses a
more readable format than write
does. (Strings aren’t quoted, and
characters aren’t escaped.)
(close-input-port port)

This closes the input port
specified by port.
(close-output-port port)

This closes the output port
specified by port.

173CS 538 Spring 2008©

Example—Reading & Echoing a
File

We will iterate through a file,
reading and echoing its contents.
We need a good way to do
iteration; recursion is neither
natural nor efficient here.
Scheme provides a nice
generalization of the let
expression that is similar to C’s
for loop.
(let X ((id1 val1) (id2 val2) ...)
 ...
 (X v1 v2 ...)
)

A name for the let (X in the
example) is provided. As usual,
val1 is evaluated and bound to
id1, val2 is evaluated and bound
to id2, etc. In the body of the let,
the let may be “called” (using its

174CS 538 Spring 2008©

name) with a fresh set of values
for the let variables. Thus (X v1
v2 ...) starts the next iteration
of the let with id1 bound to v1,
id2, bound to v2, etc.
The calls look like recursion, but
they are implemented as loop
iterations.
For example, in
(let loop ((x 1) (sum 0))
 (if (<= x 10)
 (loop (+ x 1) (+ sum x))

sum
)
)

we sum the values of x from 1 to
10.
Compare it to
for (x=1,sum=0; x <= 10;
 sum+=x,x+=1)

 {}

175CS 538 Spring 2008©

Now a function to read and echo a
file is straightforward:
(define (echo filename)
 (let (

(p (open-input-file filename)))
 (let loop ((obj (read p)))
 (if (eof-object? obj)
 #t ;normal termination
 (begin
 (write obj)
 (newline)
 (loop (read p))
)
)
)
)
)

176CS 538 Spring 2008©

We can create an alternative to
echo that uses
(call-with-input-file
 filename function)

This function opens filename,
creates an input port from it, and
then calls function with that
port as an argument:
(define (echo2 filename)
 (call-with-input-file filename
 (lambda(port)

(let loop ((obj (read port)))
 (if (eof-object? obj)
 #t
 (begin
 (write obj)
 (newline)
 (loop (read port))
)
)
)
)
))

