
166CS 538 Spring 2008©

Equality Checking in Scheme
In Scheme = is used to test for
numeric equality (including
comparison of different numeric
types). Non-numeric arguments
cause a run-time error. Thus
(= 1 1) ⇒ #t

(= 1 1.0) ⇒ #t

(= 1 2/2) ⇒ #t

(= 1 1+0.0i) ⇒ #t

167CS 538 Spring 2008©

To compare non-numeric values,
we can use either:
pointer equivalence (do the two
operands point to the same
address in memory)
structural equivalence (do the two
operands point to structures with
the same size, shape and
components, even if they are in
different memory locations)
In general pointer equivalence is
faster but less accurate.

Scheme implements both kinds of
equivalence tests.
(eqv? obj1 obj2)

This tests if obj1 and obj2 are
the exact same object. This works
for atoms and pointers to the
same structure.

168CS 538 Spring 2008©

(equal? obj1 obj2)

This tests if obj1 and obj2 are
the same, component by
component. This works for
atoms, lists, vectors and strings.
(eqv? 1 1) ⇒ #t

(eqv? 1 (+ 0 1)) ⇒ #t

(eqv? 1/2 (- 1 1/2)) ⇒ #t

(eqv? (cons 1 2) (cons 1 2)) ⇒
#f

(eqv? "abc" "abc") ⇒ #f

(equal? 1 1) ⇒ #t

(equal? 1 (+ 0 1)) ⇒ #t

(equal? 1/2 (- 1 1/2)) ⇒ #t

(equal? (cons 1 2) (cons 1 2)) ⇒
#t

(equal? "abc" "abc") ⇒ #t

In general it is wise to use equal?
unless speed is a critical factor.

169CS 538 Spring 2008©

I/O in Scheme
Scheme has simple read and write
functions, directed to the“standard
in” and “standard out” files.
(read)

Reads a single Scheme object (an
atom, string, vector or list) from
the standard in file. No quoting is
needed.
(write obj)

Writes a single object, obj, to the
standard out file.
(display obj)

Writes obj to the standard out file
in a more readable format.
(Strings aren’t quoted, and
characters aren’t escaped.)
(newline)

Forces a new line on standard out
file.

170CS 538 Spring 2008©

 Ports
Ports are Scheme objects that
interface with systems files. I/O to
files is normally done through a
port object bound to a system
file.
(open-input-file "path to file")

This returns an input port
associated with the "path to
file" string (which is system
dependent). A run-time error is
signalled if "path to file"
specifies an illegal or inaccessible
file.
(read port)

Reads a single Scheme object (an
atom, string, vector or list) from
port, which must be an input
port object.

171CS 538 Spring 2008©

(eof-object? obj)

When the end of an input file is
reached, a special eof-object is
returned. eof-object? tests
whether an object is this special
end-of-file marker.
(open-output-file "path to file")

This returns an output port
associated with the "path to
file" string (which is system
dependent). A run-time error is
signalled if "path to file"
specifies an illegal or inaccessible
file.
(write obj port)

Writes a single object, obj, to the
output port specified by port.

172CS 538 Spring 2008©

(display obj port)

Writes obj to the output port
specified by port. display uses a
more readable format than write
does. (Strings aren’t quoted, and
characters aren’t escaped.)
(close-input-port port)

This closes the input port
specified by port.
(close-output-port port)

This closes the output port
specified by port.

173CS 538 Spring 2008©

Example—Reading & Echoing a
File

We will iterate through a file,
reading and echoing its contents.
We need a good way to do
iteration; recursion is neither
natural nor efficient here.
Scheme provides a nice
generalization of the let
expression that is similar to C’s
for loop.
(let X ((id1 val1) (id2 val2) ...)
 ...
 (X v1 v2 ...)
)

A name for the let (X in the
example) is provided. As usual,
val1 is evaluated and bound to
id1, val2 is evaluated and bound
to id2, etc. In the body of the let,
the let may be “called” (using its

174CS 538 Spring 2008©

name) with a fresh set of values
for the let variables. Thus (X v1
v2 ...) starts the next iteration
of the let with id1 bound to v1,
id2, bound to v2, etc.
The calls look like recursion, but
they are implemented as loop
iterations.
For example, in
(let loop ((x 1) (sum 0))
 (if (<= x 10)
 (loop (+ x 1) (+ sum x))

sum
)
)

we sum the values of x from 1 to
10.
Compare it to
for (x=1,sum=0; x <= 10;
 sum+=x,x+=1)

 {}

175CS 538 Spring 2008©

Now a function to read and echo a
file is straightforward:
(define (echo filename)
 (let (

(p (open-input-file filename)))
 (let loop ((obj (read p)))
 (if (eof-object? obj)
 #t ;normal termination
 (begin
 (write obj)
 (newline)
 (loop (read p))
)
)
)
)
)

176CS 538 Spring 2008©

We can create an alternative to
echo that uses
(call-with-input-file
 filename function)

This function opens filename,
creates an input port from it, and
then calls function with that
port as an argument:
(define (echo2 filename)
 (call-with-input-file filename
 (lambda(port)

(let loop ((obj (read port)))
 (if (eof-object? obj)
 #t
 (begin
 (write obj)
 (newline)
 (loop (read port))
)
)
)
)
))

177CS 538 Spring 2008©

Control Flow in Scheme
Normally, Scheme’s control flow is
simple and recursive:
• The first argument is evaluated to

get a function.

• Remaining arguments are
evaluated to get actual parameters.

• Actual parameters are bound to the
function’s formal parameters.

• The functions’ body is evaluated to
obtain the value of the function
call.

This approach routinely leads to
deeply nested expression
evaluation.

178CS 538 Spring 2008©

As an example, consider a simple
function that multiplies a list of
integers:
(define (*list L)
 (if (null? L)
 1
 (* (car L)(*list (cdr L)))
)
)

The call (*list '(1 2 3 4 5))
expands to
(* 1 (* 2 (* 3 (* 4 (* 5 1)))))

But,
what if we get clever and decide
to improve this function by noting
that if 0 appears anywhere in list
L, the product must be 0?

179CS 538 Spring 2008©

Let’s try
(define (*list0 L)
 (cond
 ((null? L) 1)
 ((= 0 (car L)) 0)
 (else (* (car L)
 (*list0 (cdr L))))
)
)

This helps a bit—we never go
past a zero in L, but we still
unnecessarily do a sequence of
pending multiplies, all of which
must yield zero!
Can we escape from a sequence
of nested calls once we know
they’re unnecessary?

180CS 538 Spring 2008©

Exceptions
In languages like Java, a
statement may throw an
exception that’s caught by an
enclosing exception handler.
Code between the statement that
throws the exception and the
handler that catches it is
abandoned.
Let’s solve the problem of
avoiding multiplication of zero in
Java, using its exception
mechanism:
class Node {

 int val;

 Node next;

}

class Zero extends Throwable
{};

181CS 538 Spring 2008©

int mult (Node L) {

 try {

 return multNode(L);

 } catch (Zero z) {

 return 0;

 }

}

int multNode(Node L)

 throws Zero {

 if (L == null)

 return 1;

 else if (L.val == 0)

 throw new Zero();

 else return
 L.val * multNode(L.next);

}

In this implementation, no
multiplies by zero are ever done.

182CS 538 Spring 2008©

Continuations
In our Scheme implementation of
*list, we’d like a way to delay
doing any multiplies until we
know no zeros appear in the list.
One approach is to build a
continuation—a function that
represents the context in which a
function’s return value will be
used:
(define (*listC L con)

 (cond
 ((null? L) (con 1))
 ((= 0 (car L)) 0)
 (else
 (*listC (cdr L)
 (lambda (n)
 (* n (con (car L)))))
)
)
)

183CS 538 Spring 2008©

The top-level call is
(*listC L (lambda (x) x))

For ordinary lists *listC expands
to a series of multiplies, just like
*list did.
(define (id x) x)

(*listC '(1 2 3) id) ⇒
(*listC '(2 3)
 (lambda (n) (* n (id 1)))) ≡
(*listC '(2 3)
 (lambda (n) (* n 1))) ⇒
(*listC '(3)
 (lambda (n) (* n (* 2 1)))) ≡
(*listC '(3)
 (lambda (n) (* n 2))) ⇒
(*listC ()
 (lambda (n) (* n (* 3 2)))) ≡
(*listC () (lambda (n) (* n 6)))

⇒ (* 1 6) ⇒ 6

184CS 538 Spring 2008©

But for a list with a zero in it, we
get a different execution path:
(*listC '(1 0 3) id) ⇒
(*listC '(0 3)
(lambda (n) (* n (id 1)))) ⇒ 0

No multiplies are done!

185CS 538 Spring 2008©

Another Example of
Continuations

Let’s redo our list multiply
example so that if a zero is seen
in the list we return a function
that computes the product of all
the non-zero values and a
parameter that is the
“replacement value” for the
unwanted zero value. The
function gives the caller a chance
to correct a probable error in the
input data.
We create
(*list2 L) ≡
Product of all integers in L if
no zero appears

else
(lambda (n) (* n product-of-all-
nonzeros-in-L)

186CS 538 Spring 2008©

(define (*list2 L) (*listE L id))

(define (*listE L con)
 (cond
 ((null? L) (con 1))
 ((= 0 (car L))
 (lambda(n)
 (* (con n)
 (*listE (cdr L) id))))
 (else
 (*listE (cdr L)
 (lambda(m)
 (* m (con (car L))))))
)
)

187CS 538 Spring 2008©

In the following, we check to see
if *list2 returns a number or a
function. If a function is returned,
we call it with 1, effectively
removing 0 from the list
(let ((V (*list2 L)))

 (if (number? V)

 V

 (V 1)

)

)

188CS 538 Spring 2008©

For ordinary lists *list2 expands
to a series of multiplies, just like
*list did.
(*listE '(1 2 3) id) ⇒
(*listE '(2 3)
 (lambda (m) (* m (id 1)))) ≡
(*listE '(2 3)
 (lambda (m) (* m 1))) ⇒
(*listE '(3)
 (lambda (m) (* m (* 2 1)))) ≡
(*listE '(3)
 (lambda (m) (* m 2))) ⇒
(*listE ()
 (lambda (m) (* m (* 3 2)))) ≡
(*listE () (lambda (n) (* n 6)))

⇒ (* 1 6) ⇒ 6

189CS 538 Spring 2008©

But for a list with a zero in it, we
get a different execution path:
(*listE '(1 0 3) id) ⇒
(*listE '(0 3)
 (lambda (m) (* m (id 1)))) ⇒
(lambda (n) (* (con n)
 (* listE '(3) id))) ≡
(lambda (n) (* (* n 1)

(* listE '(3) id))) ≡
(lambda (n) (* (* n 1) 3))

This function multiplies n, the
replacement value for 0, by 1 and
3, the non-zero values in the input
list.

190CS 538 Spring 2008©

But note that only one zero value
in the list is handled correctly!
Why?
(define (*listE L con)
 (cond
 ((null? L) (con 1))
 ((= 0 (car L))
 (lambda(n)
 (* (con n)

(*listE (cdr L) id))))
 (else
 (*listE (cdr L)
 (lambda(m)
 (* m (con (car L))))))
)
)

