
182CS 538 Spring 2008©

Continuations
In our Scheme implementation of
*list, we’d like a way to delay
doing any multiplies until we
know no zeros appear in the list.
One approach is to build a
continuation—a function that
represents the context in which a
function’s return value will be
used:
(define (*listC L con)

 (cond
 ((null? L) (con 1))
 ((= 0 (car L)) 0)
 (else
 (*listC (cdr L)
 (lambda (n)
 (* n (con (car L)))))
)
)
)

183CS 538 Spring 2008©

The top-level call is
(*listC L (lambda (x) x))

For ordinary lists *listC expands
to a series of multiplies, just like
*list did.
(define (id x) x)

(*listC '(1 2 3) id) ⇒
(*listC '(2 3)
 (lambda (n) (* n (id 1)))) ≡
(*listC '(2 3)
 (lambda (n) (* n 1))) ⇒
(*listC '(3)
 (lambda (n) (* n (* 2 1)))) ≡
(*listC '(3)
 (lambda (n) (* n 2))) ⇒
(*listC ()
 (lambda (n) (* n (* 3 2)))) ≡
(*listC () (lambda (n) (* n 6)))

⇒ (* 1 6) ⇒ 6

184CS 538 Spring 2008©

But for a list with a zero in it, we
get a different execution path:
(*listC '(1 0 3) id) ⇒
(*listC '(0 3)
(lambda (n) (* n (id 1)))) ⇒ 0

No multiplies are done!

185CS 538 Spring 2008©

Another Example of
Continuations

Let’s redo our list multiply
example so that if a zero is seen
in the list we return a function
that computes the product of all
the non-zero values and a
parameter that is the
“replacement value” for the
unwanted zero value. The
function gives the caller a chance
to correct a probable error in the
input data.
We create
(*list2 L) ≡
Product of all integers in L if
no zero appears

else
(lambda (n) (* n product-of-all-
nonzeros-in-L)

186CS 538 Spring 2008©

(define (*list2 L) (*listE L id))

(define (*listE L con)
 (cond
 ((null? L) (con 1))
 ((= 0 (car L))
 (lambda(n)
 (* (con n)
 (*listE (cdr L) id))))
 (else
 (*listE (cdr L)
 (lambda(m)
 (* m (con (car L))))))
)
)

187CS 538 Spring 2008©

In the following, we check to see
if *list2 returns a number or a
function. If a function is returned,
we call it with 1, effectively
removing 0 from the list
(let ((V (*list2 L)))

 (if (number? V)

 V

 (V 1)

)

)

188CS 538 Spring 2008©

For ordinary lists *list2 expands
to a series of multiplies, just like
*list did.
(*listE '(1 2 3) id) ⇒
(*listE '(2 3)
 (lambda (m) (* m (id 1)))) ≡
(*listE '(2 3)
 (lambda (m) (* m 1))) ⇒
(*listE '(3)
 (lambda (m) (* m (* 2 1)))) ≡
(*listE '(3)
 (lambda (m) (* m 2))) ⇒
(*listE ()
 (lambda (m) (* m (* 3 2)))) ≡
(*listE () (lambda (n) (* n 6)))

⇒ (* 1 6) ⇒ 6

189CS 538 Spring 2008©

But for a list with a zero in it, we
get a different execution path:
(*listE '(1 0 3) id) ⇒
(*listE '(0 3)
 (lambda (m) (* m (id 1)))) ⇒
(lambda (n) (* (con n)
 (* listE '(3) id))) ≡
(lambda (n) (* (* n 1)

(* listE '(3) id))) ≡
(lambda (n) (* (* n 1) 3))

This function multiplies n, the
replacement value for 0, by 1 and
3, the non-zero values in the input
list.

190CS 538 Spring 2008©

But note that only one zero value
in the list is handled correctly!
Why?
(define (*listE L con)
 (cond
 ((null? L) (con 1))
 ((= 0 (car L))
 (lambda(n)
 (* (con n)

(*listE (cdr L) id))))
 (else
 (*listE (cdr L)
 (lambda(m)
 (* m (con (car L))))))
)
)

191CS 538 Spring 2008©

Continuations in Scheme
Scheme provides a built-in
mechanism for creating
continuations. It has a long name:
call-with-current-continuation

This name is often abbreviated as
call/cc

(perhaps using define).
call/cc takes a single function as
its argument. That function also
takes a single argument. That is,
we use call/cc as

(call/cc funct) where
funct ≡ (lambda (con) (body))
call/cc calls the function that it
is given with the “current
continuation” as the function’s
argument.

192CS 538 Spring 2008©

Current Continuations
What is the current continuation?
It is itself a function of one
argument. The current
continuation function represents
the execution context within
which the call/cc appears. The
argument to the continuation is a
value to be substituted as the
return value of call/cc in that
execution context.
For example, given
(+ (fct n) 3)

the current continuation for
(fct n) is (lambda (x) (+ x 3)

Given (* 2 (+ (fct z) 10))

the current continuation for
 (fct z) is
(lambda (m) (* 2 (+ m 10))

193CS 538 Spring 2008©

To use call/cc to grab a
continuation in (say) (+ (fct n) 3)
we make (fct n) the body of a
function of one argument. Call that
argument return. We therefore build
(lambda (return) (fct n))

Then
(call/cc
 (lambda (return) (fct n)))

binds the current continuation to
return and executes (fct n).
We can ignore the current
continuation bound to return
and do a normal return
or
we can use return to force a
return to the calling context of the
call/cc.
The call (return value) forces
value to be returned as the value
of call/cc in its context of call.

194CS 538 Spring 2008©

Example:

(define (g con) (con 5))

Now during evaluation no divide
by zero error occurs. Rather, when
(g return) is called, 5 is passed
to con, which is bound to return.
Therefore 5 is used as the value of
the call to call/cc, and 50 is
computed.

(* (call/cc (lambda(return)
 (/ (g return) 0))) 10)

return

195CS 538 Spring 2008©

Continuations are Just
Functions

Continuations may be saved in
variables or data structures and
called in the future to “reactive” a
completed or suspended
computation.
(define CC ())
(define (F)
 (let (
 (v (call/cc
 (lambda(here)
 (set! CC here)
 1))))

(display "The ans is: ")
 (display v)
(newline)

))

This displays The ans is: 1

At any time in the future, (CC 10)
will display The ans is: 10

196CS 538 Spring 2008©

List Multiplication Revisited
We can use call/cc to
reimplement the original *list to
force an immediate return of 0
(much like a throw in Java):
(define (*listc L return)
 (cond
 ((null? L) 1)
 ((= 0 (car L)) (return 0))
 (else (* (car L)

(*listc (cdr L) return)))
))

(define (*list L)
 (call/cc
 (lambda (return)
 (*listc L return)
)))

A 0 in L forces a call of (return
0) which makes 0 the value of
call/cc.

197CS 538 Spring 2008©

Interactive Replacement of
Error Values

Using continuations, we can also
redo *listE so that zeroes can
be replaced interactively! Multiple
zeroes (in both original and
replacement values) are correctly
handled.
(define (*list L)
 (let (
 (V (call/cc
 (lambda (here)
 (*liste L here)))))
 (if (number? V)
 V
 (begin
 (display
 "Enter new value for 0")
 (newline) (newline)
 (V (read))
)
)
)
)

198CS 538 Spring 2008©

(define (*liste L return)
 (if (null? L)
 1
 (let loop ((value (car L)))
 (if (= 0 value)
 (loop
 (call/cc
 (lambda (x) (return x))))
 (* value
 (*liste (cdr L) return))
)
)
)
)

If a zero is seen, *liste passes
back to the caller (via return) a
continuation that will set the next
value of value. This value is
checked, so if it is itself zero, a
substitute is requested. Each
occurrence of zero forces a return
to the caller for a substitute value.

199CS 538 Spring 2008©

Implementing Coroutines with
call/cc

Coroutines are a very handy
generalization of subroutines. A
coroutine may suspend its
execution and later resume from
the point of suspension. Unlike
subroutines, coroutines do no
have to complete their execution
before they return.
Coroutines are useful for
computation of long or infinite
streams of data, where we wish to
compute some data, use it,
compute additional data, use it,
etc.
Subroutines aren’t always able to
handle this, as we may need to
save a lot of internal state to
resume with the correct next
value.

200CS 538 Spring 2008©

Producer/Consumer using
Coroutines

The example we will use is one of
a consumer of a potentially
infinite stream of data. The next
integer in the stream (represented
as an unbounded list) is read. Call
this value n. Then the next n
integers are read and summed
together. The answer is printed,
and the user is asked whether
another sum is required. Since we
don’t know in advance how many
integers will be needed, we’ll use
a coroutine to produce the data
list in segments, requesting
another segment as necessary.

201CS 538 Spring 2008©

(define (consumer)

 (next 0); reset next function
 (let loop ((data (moredata)))
 (let (
 (sum+restoflist
 (sum-n-elems (car data)
 (cons 0 (cdr data)))))
 (display (car sum+restoflist))
 (newline)
 (display "more? ")
 (if (equal? (read) ’y)
 (if (= 1

(length sum+restoflist))
 (loop (moredata))

(loop (cdr sum+restoflist))
)

 #t ; Normal completion
)
)
)
)

202CS 538 Spring 2008©

Next, we’ll consider sum-n-
elems, which adds the first
element of list (a running sum) to
the next n elements on the list.
We’ll use moredata to extend the
data list as needed.
(define (sum-n-elems n list)
 (cond
 ((= 0 n) list)
 ((null? (cdr list))
 (sum-n-elems n

(cons (car list)(moredata))))
 (else
 (sum-n-elems (- n 1)
 (cons (+ (car list)
 (cadr list))
 (cddr list))))

)
)

203CS 538 Spring 2008©

The function moredata is called
whenever we need more data.
Initially a producer function is
called to get the initial segment of
data. producer actually returns
the next data segment plus a
continuation (stored in
producer-cc) used to resume
execution of producer when the
next data segment is required.

204CS 538 Spring 2008©

(define moredata
 (let ((producer-cc ()))
 (lambda ()
 (let (
 (data+cont
 (if (null? producer-cc)
 (call/cc (lambda (here)

(producer here)))
 (call/cc (lambda (here)
 (producer-cc here)))
)
))
 (set! producer-cc
 (cdr data+cont))
 (car data+cont)
)
)
)
)

205CS 538 Spring 2008©

Function (next z) returns the
next z integers in an infinite
sequence that starts at 1. A value
z=0 is a special flag indicating
that the sequence should be reset
to start at 1.
(define next
 (let ((i 1))
 (lambda (z)
 (if (= 0 z)
 (set! i 1)
 (let loop

((cnt z) (val i) (ints ()))
 (if (> cnt 0)
 (loop (- cnt 1)
 (+ val 1)
 (append ints
 (list val)))
 (begin
 (set! i val)
 ints
)
)
)
))))

206CS 538 Spring 2008©

The function producer generates
an infinite sequence of integers
(1,2,3,...). It suspends every 5/
10/15/25 elements and returns
control to moredata.
(define (producer initial-return)
 (let loop
 ((return initial-return))
 (set! return
 (call/cc (lambda (here)

(return (cons (next 5)
 here)))))
 (set! return
 (call/cc (lambda (here)

(return (cons (next 10)
 here)))))
 (set! return
 (call/cc (lambda (here)
 (return (cons (next 15)
 here)))))
 (loop
 (call/cc (lambda (here)

(return (cons (next 25)
 here)))))
))

