
192CS 538 Spring 2008©

Current Continuations
What is the current continuation?
It is itself a function of one
argument. The current
continuation function represents
the execution context within
which the call/cc appears. The
argument to the continuation is a
value to be substituted as the
return value of call/cc in that
execution context.
For example, given
(+ (fct n) 3)

the current continuation for
(fct n) is (lambda (x) (+ x 3)

Given (* 2 (+ (fct z) 10))

the current continuation for
 (fct z) is
(lambda (m) (* 2 (+ m 10))

193CS 538 Spring 2008©

To use call/cc to grab a
continuation in (say) (+ (fct n) 3)
we make (fct n) the body of a
function of one argument. Call that
argument return. We therefore build
(lambda (return) (fct n))

Then
(call/cc
 (lambda (return) (fct n)))

binds the current continuation to
return and executes (fct n).
We can ignore the current
continuation bound to return
and do a normal return
or
we can use return to force a
return to the calling context of the
call/cc.
The call (return value) forces
value to be returned as the value
of call/cc in its context of call.

194CS 538 Spring 2008©

Example:

(define (g con) (con 5))

Now during evaluation no divide
by zero error occurs. Rather, when
(g return) is called, 5 is passed
to con, which is bound to return.
Therefore 5 is used as the value of
the call to call/cc, and 50 is
computed.

(* (call/cc (lambda(return)
 (/ (g return) 0))) 10)

return

195CS 538 Spring 2008©

Continuations are Just
Functions

Continuations may be saved in
variables or data structures and
called in the future to “reactive” a
completed or suspended
computation.
(define CC ())
(define (F)
 (let (
 (v (call/cc
 (lambda(here)
 (set! CC here)
 1))))

(display "The ans is: ")
 (display v)
(newline)

))

This displays The ans is: 1

At any time in the future, (CC 10)
will display The ans is: 10

196CS 538 Spring 2008©

List Multiplication Revisited
We can use call/cc to
reimplement the original *list to
force an immediate return of 0
(much like a throw in Java):
(define (*listc L return)
 (cond
 ((null? L) 1)
 ((= 0 (car L)) (return 0))
 (else (* (car L)

(*listc (cdr L) return)))
))

(define (*list L)
 (call/cc
 (lambda (return)
 (*listc L return)
)))

A 0 in L forces a call of (return
0) which makes 0 the value of
call/cc.

197CS 538 Spring 2008©

Interactive Replacement of
Error Values

Using continuations, we can also
redo *listE so that zeroes can
be replaced interactively! Multiple
zeroes (in both original and
replacement values) are correctly
handled.
(define (*list L)
 (let (
 (V (call/cc
 (lambda (here)
 (*liste L here)))))
 (if (number? V)
 V
 (begin
 (display
 "Enter new value for 0")
 (newline) (newline)
 (V (read))
)
)
)
)

198CS 538 Spring 2008©

(define (*liste L return)
 (if (null? L)
 1
 (let loop ((value (car L)))
 (if (= 0 value)
 (loop
 (call/cc
 (lambda (x) (return x))))
 (* value
 (*liste (cdr L) return))
)
)
)
)

If a zero is seen, *liste passes
back to the caller (via return) a
continuation that will set the next
value of value. This value is
checked, so if it is itself zero, a
substitute is requested. Each
occurrence of zero forces a return
to the caller for a substitute value.

199CS 538 Spring 2008©

Implementing Coroutines with
call/cc

Coroutines are a very handy
generalization of subroutines. A
coroutine may suspend its
execution and later resume from
the point of suspension. Unlike
subroutines, coroutines do no
have to complete their execution
before they return.
Coroutines are useful for
computation of long or infinite
streams of data, where we wish to
compute some data, use it,
compute additional data, use it,
etc.
Subroutines aren’t always able to
handle this, as we may need to
save a lot of internal state to
resume with the correct next
value.

200CS 538 Spring 2008©

Producer/Consumer using
Coroutines

The example we will use is one of
a consumer of a potentially
infinite stream of data. The next
integer in the stream (represented
as an unbounded list) is read. Call
this value n. Then the next n
integers are read and summed
together. The answer is printed,
and the user is asked whether
another sum is required. Since we
don’t know in advance how many
integers will be needed, we’ll use
a coroutine to produce the data
list in segments, requesting
another segment as necessary.

201CS 538 Spring 2008©

(define (consumer)

 (next 0); reset next function
 (let loop ((data (moredata)))
 (let (
 (sum+restoflist
 (sum-n-elems (car data)
 (cons 0 (cdr data)))))
 (display (car sum+restoflist))
 (newline)
 (display "more? ")
 (if (equal? (read) ’y)
 (if (= 1

(length sum+restoflist))
 (loop (moredata))

(loop (cdr sum+restoflist))
)

 #t ; Normal completion
)
)
)
)

202CS 538 Spring 2008©

Next, we’ll consider sum-n-
elems, which adds the first
element of list (a running sum) to
the next n elements on the list.
We’ll use moredata to extend the
data list as needed.
(define (sum-n-elems n list)
 (cond
 ((= 0 n) list)
 ((null? (cdr list))
 (sum-n-elems n

(cons (car list)(moredata))))
 (else
 (sum-n-elems (- n 1)
 (cons (+ (car list)
 (cadr list))
 (cddr list))))

)
)

203CS 538 Spring 2008©

The function moredata is called
whenever we need more data.
Initially a producer function is
called to get the initial segment of
data. producer actually returns
the next data segment plus a
continuation (stored in
producer-cc) used to resume
execution of producer when the
next data segment is required.

204CS 538 Spring 2008©

(define moredata
 (let ((producer-cc ()))
 (lambda ()
 (let (
 (data+cont
 (if (null? producer-cc)
 (call/cc (lambda (here)

(producer here)))
 (call/cc (lambda (here)
 (producer-cc here)))
)
))
 (set! producer-cc
 (cdr data+cont))
 (car data+cont)
)
)
)
)

205CS 538 Spring 2008©

Function (next z) returns the
next z integers in an infinite
sequence that starts at 1. A value
z=0 is a special flag indicating
that the sequence should be reset
to start at 1.
(define next
 (let ((i 1))
 (lambda (z)
 (if (= 0 z)
 (set! i 1)
 (let loop

((cnt z) (val i) (ints ()))
 (if (> cnt 0)
 (loop (- cnt 1)
 (+ val 1)
 (append ints
 (list val)))
 (begin
 (set! i val)
 ints
)
)
)
))))

206CS 538 Spring 2008©

The function producer generates
an infinite sequence of integers
(1,2,3,...). It suspends every 5/
10/15/25 elements and returns
control to moredata.
(define (producer initial-return)
 (let loop
 ((return initial-return))
 (set! return
 (call/cc (lambda (here)

(return (cons (next 5)
 here)))))
 (set! return
 (call/cc (lambda (here)

(return (cons (next 10)
 here)))))
 (set! return
 (call/cc (lambda (here)
 (return (cons (next 15)
 here)))))
 (loop
 (call/cc (lambda (here)

(return (cons (next 25)
 here)))))
))

207CS 538 Spring 2008©

Reading Assignment
• MULTILISP: a language for concurrent

symbolic computation,
by Robert H. Halstead
(linked from class web page)

208CS 538 Spring 2008©

Lazy Evaluation
Lazy evaluation is sometimes
called “call by need.” We do an
evaluation when a value is used;
not when it is defined.
Scheme provides for lazy
evaluation:
(delay expression)

Evaluation of expression is
delayed. The call returns a
“promise” that is essentially a
lambda expression.
(force promise)

A promise, created by a call to
delay, is evaluated. If the promise
has already been evaluated, the
value computed by the first call to
force is reused.

209CS 538 Spring 2008©

Example:
Though and is predefined, writing
a correct implementation for it is
a bit tricky.
The obvious program
(define (and A B)

 (if A

 B

 #f

)

)

is incorrect since B is always
evaluated whether it is needed or
not. In a call like
(and (not (= i 0)) (> (/ j i) 10))

unnecessary evaluation might be
fatal.

210CS 538 Spring 2008©

An argument to a function is strict
if it is always used. Non-strict
arguments may cause failure if
evaluated unnecessarily.
With lazy evaluation, we can
define a more robust and
function:
(define (and A B)

 (if A

 (force B)

 #f

)

)

This is called as:
(and (not (= i 0))
 (delay (> (/ j i) 10)))

Note that making the programmer
remember to add a call to delay
is unappealing.

211CS 538 Spring 2008©

Delayed evaluation also allows us
a neat implementation of
suspensions.
The following definition of an
infinite list of integers clearly
fails:
(define (inflist i)

 (cons i (inflist (+ i 1))))

But with use of delays we get the
desired effect in finite time:
(define (inflist i)
 (cons i
 (delay (inflist (+ i 1)))))

Now a call like (inflist 1)
creates

1 promise for
(inflist 2)

212CS 538 Spring 2008©

We need to slightly modify how
we explore suspended infinite
lists. We can’t redefine car and
cdr as these are far too
fundamental to tamper with.
Instead we’ll define head and
tail to do much the same job:
(define head car)

(define (tail L)

 (force (cdr L)))

head looks at car values which
are fully evaluated.
tail forces one level of
evaluation of a delayed cdr and
saves the evaluated value in place
of the suspension (promise).

213CS 538 Spring 2008©

Given
(define IL (inflist 1))

(head (tail IL)) returns 2 and
expands IL into

2 promise for
(inflist 3)

1

214CS 538 Spring 2008©

Exploiting Parallelism
Conventional procedural
programming languages are
difficult to compile for
multiprocessors.
Frequent assignments make it
difficult to find independent
computations.
Consider (in Fortran):

 do 10 I = 1,1000
 X(I) = 0
 A(I) = A(I+1)+1
 B(I) = B(I-1)-1
 C(I) = (C(I-2) + C(I+2))/2
10 continue

This loop defines 1000 values for
arrays X, A, B and C.

215CS 538 Spring 2008©

Which computations can be done
in parallel, partitioning parts of an
array to several processors, each
operating independently?
• X(I) = 0

Assignments to X can be readily
parallelized.

• A(I) = A(I+1)+1
Each update of A(I) uses an A(I+1)
value that is not yet changed. Thus
a whole array of new A values can
be computed from an array of “old”
A values in parallel.

• B(I) = B(I-1)-1
This is less obvious. Each B(I)
uses B(I-1) which is defined in
terms of B(I-2), etc. Ultimately all
new B values depend only on B(0)
and I. That is, B(I) = B(0) - I. So
this computation can be
parallelized, but it takes a fair
amount of insight to realize it.

216CS 538 Spring 2008©

• C(I) = (C(I-2) + C(I+2))/2
It is clear that even and odd
elements of C don’t interact. Hence
two processors could compute
even and odd elements of C in
parallel. Beyond this, since both
earlier and later C values are used
in each computation of an element,
no further means of parallel
evaluation is evident. Serial
evaluation will probably be needed
for even or odd values.

217CS 538 Spring 2008©

Exploiting Parallelism in
Scheme

Assume we have a shared-
memory multiprocessor. We might
be able to assign different
processors to evaluate various
independent subexpressions.
For example, consider
(map (lambda(x) (* 2 x))
 '(1 2 3 4 5))
We might assign a processor to
each list element and compute
the lambda function on each
concurrently:

1 2 3 4 5

2 4 6 8 10

Processor 1 Processor 5...

