
199CS 538 Spring 2008©

Implementing Coroutines with
call/cc

Coroutines are a very handy
generalization of subroutines. A
coroutine may suspend its
execution and later resume from
the point of suspension. Unlike
subroutines, coroutines do no
have to complete their execution
before they return.
Coroutines are useful for
computation of long or infinite
streams of data, where we wish to
compute some data, use it,
compute additional data, use it,
etc.
Subroutines aren’t always able to
handle this, as we may need to
save a lot of internal state to
resume with the correct next
value.

200CS 538 Spring 2008©

Producer/Consumer using
Coroutines

The example we will use is one of
a consumer of a potentially
infinite stream of data. The next
integer in the stream (represented
as an unbounded list) is read. Call
this value n. Then the next n
integers are read and summed
together. The answer is printed,
and the user is asked whether
another sum is required. Since we
don’t know in advance how many
integers will be needed, we’ll use
a coroutine to produce the data
list in segments, requesting
another segment as necessary.

201CS 538 Spring 2008©

(define (consumer)

 (next 0); reset next function
 (let loop ((data (moredata)))
 (let (
 (sum+restoflist
 (sum-n-elems (car data)
 (cons 0 (cdr data)))))
 (display (car sum+restoflist))
 (newline)
 (display "more? ")
 (if (equal? (read) ’y)
 (if (= 1

(length sum+restoflist))
 (loop (moredata))

(loop (cdr sum+restoflist))
)

 #t ; Normal completion
)
)
)
)

202CS 538 Spring 2008©

Next, we’ll consider sum-n-
elems, which adds the first
element of list (a running sum) to
the next n elements on the list.
We’ll use moredata to extend the
data list as needed.
(define (sum-n-elems n list)
 (cond
 ((= 0 n) list)
 ((null? (cdr list))
 (sum-n-elems n

(cons (car list)(moredata))))
 (else
 (sum-n-elems (- n 1)
 (cons (+ (car list)
 (cadr list))
 (cddr list))))

)
)

203CS 538 Spring 2008©

The function moredata is called
whenever we need more data.
Initially a producer function is
called to get the initial segment of
data. producer actually returns
the next data segment plus a
continuation (stored in
producer-cc) used to resume
execution of producer when the
next data segment is required.

204CS 538 Spring 2008©

(define moredata
 (let ((producer-cc ()))
 (lambda ()
 (let (
 (data+cont
 (if (null? producer-cc)
 (call/cc (lambda (here)

(producer here)))
 (call/cc (lambda (here)
 (producer-cc here)))
)
))
 (set! producer-cc
 (cdr data+cont))
 (car data+cont)
)
)
)
)

205CS 538 Spring 2008©

Function (next z) returns the
next z integers in an infinite
sequence that starts at 1. A value
z=0 is a special flag indicating
that the sequence should be reset
to start at 1.
(define next
 (let ((i 1))
 (lambda (z)
 (if (= 0 z)
 (set! i 1)
 (let loop

((cnt z) (val i) (ints ()))
 (if (> cnt 0)
 (loop (- cnt 1)
 (+ val 1)
 (append ints
 (list val)))
 (begin
 (set! i val)
 ints
)
)
)
))))

206CS 538 Spring 2008©

The function producer generates
an infinite sequence of integers
(1,2,3,...). It suspends every 5/
10/15/25 elements and returns
control to moredata.
(define (producer initial-return)
 (let loop
 ((return initial-return))
 (set! return
 (call/cc (lambda (here)

(return (cons (next 5)
 here)))))
 (set! return
 (call/cc (lambda (here)

(return (cons (next 10)
 here)))))
 (set! return
 (call/cc (lambda (here)
 (return (cons (next 15)
 here)))))
 (loop
 (call/cc (lambda (here)

(return (cons (next 25)
 here)))))
))

207CS 538 Spring 2008©

Reading Assignment
• MULTILISP: a language for concurrent

symbolic computation,
by Robert H. Halstead
(linked from class web page)

208CS 538 Spring 2008©

Lazy Evaluation
Lazy evaluation is sometimes
called “call by need.” We do an
evaluation when a value is used;
not when it is defined.
Scheme provides for lazy
evaluation:
(delay expression)

Evaluation of expression is
delayed. The call returns a
“promise” that is essentially a
lambda expression.
(force promise)

A promise, created by a call to
delay, is evaluated. If the promise
has already been evaluated, the
value computed by the first call to
force is reused.

209CS 538 Spring 2008©

Example:
Though and is predefined, writing
a correct implementation for it is
a bit tricky.
The obvious program
(define (and A B)

 (if A

 B

 #f

)

)

is incorrect since B is always
evaluated whether it is needed or
not. In a call like
(and (not (= i 0)) (> (/ j i) 10))

unnecessary evaluation might be
fatal.

210CS 538 Spring 2008©

An argument to a function is strict
if it is always used. Non-strict
arguments may cause failure if
evaluated unnecessarily.
With lazy evaluation, we can
define a more robust and
function:
(define (and A B)

 (if A

 (force B)

 #f

)

)

This is called as:
(and (not (= i 0))
 (delay (> (/ j i) 10)))

Note that making the programmer
remember to add a call to delay
is unappealing.

211CS 538 Spring 2008©

Delayed evaluation also allows us
a neat implementation of
suspensions.
The following definition of an
infinite list of integers clearly
fails:
(define (inflist i)

 (cons i (inflist (+ i 1))))

But with use of delays we get the
desired effect in finite time:
(define (inflist i)
 (cons i
 (delay (inflist (+ i 1)))))

Now a call like (inflist 1)
creates

1 promise for
(inflist 2)

212CS 538 Spring 2008©

We need to slightly modify how
we explore suspended infinite
lists. We can’t redefine car and
cdr as these are far too
fundamental to tamper with.
Instead we’ll define head and
tail to do much the same job:
(define head car)

(define (tail L)

 (force (cdr L)))

head looks at car values which
are fully evaluated.
tail forces one level of
evaluation of a delayed cdr and
saves the evaluated value in place
of the suspension (promise).

213CS 538 Spring 2008©

Given
(define IL (inflist 1))

(head (tail IL)) returns 2 and
expands IL into

2 promise for
(inflist 3)

1

214CS 538 Spring 2008©

Exploiting Parallelism
Conventional procedural
programming languages are
difficult to compile for
multiprocessors.
Frequent assignments make it
difficult to find independent
computations.
Consider (in Fortran):

 do 10 I = 1,1000
 X(I) = 0
 A(I) = A(I+1)+1
 B(I) = B(I-1)-1
 C(I) = (C(I-2) + C(I+2))/2
10 continue

This loop defines 1000 values for
arrays X, A, B and C.

215CS 538 Spring 2008©

Which computations can be done
in parallel, partitioning parts of an
array to several processors, each
operating independently?
• X(I) = 0

Assignments to X can be readily
parallelized.

• A(I) = A(I+1)+1
Each update of A(I) uses an A(I+1)
value that is not yet changed. Thus
a whole array of new A values can
be computed from an array of “old”
A values in parallel.

• B(I) = B(I-1)-1
This is less obvious. Each B(I)
uses B(I-1) which is defined in
terms of B(I-2), etc. Ultimately all
new B values depend only on B(0)
and I. That is, B(I) = B(0) - I. So
this computation can be
parallelized, but it takes a fair
amount of insight to realize it.

216CS 538 Spring 2008©

• C(I) = (C(I-2) + C(I+2))/2
It is clear that even and odd
elements of C don’t interact. Hence
two processors could compute
even and odd elements of C in
parallel. Beyond this, since both
earlier and later C values are used
in each computation of an element,
no further means of parallel
evaluation is evident. Serial
evaluation will probably be needed
for even or odd values.

217CS 538 Spring 2008©

Exploiting Parallelism in
Scheme

Assume we have a shared-
memory multiprocessor. We might
be able to assign different
processors to evaluate various
independent subexpressions.
For example, consider
(map (lambda(x) (* 2 x))
 '(1 2 3 4 5))
We might assign a processor to
each list element and compute
the lambda function on each
concurrently:

1 2 3 4 5

2 4 6 8 10

Processor 1 Processor 5...

218CS 538 Spring 2008©

How is Parallelism Found?
There are two approaches:
• We can use a “smart” compiler that is

able to find parallelism in existing
programs written in standard serial
programming languages.

• We can add features to an existing
programming language that allows a
programmer to show where parallel
evaluation is desired.

219CS 538 Spring 2008©

Concurrentization
Concurrentization (often called
parallelization) is process of
automatically finding potential
concurrent execution in a serial
program.
Automatically finding current
execution is complicated by a
number of factors:
• Data Dependence

Not all expressions are
independent. We may need to
delay evaluation of an operator or
subprogram until its operands are
available.
Thus in
(+ (* x y) (* y z))

we can’t start the addition until
both multiplications are done.

220CS 538 Spring 2008©

• Control Dependence
Not all expressions need be (or
should be) evaluated.
In
(if (= a 0)

 0

 (/ b a))

we don’t want to do the division
until we know a ≠ 0.

• Side Effects
If one expression can write a
value that another expression
might read, we probably will need
to serialize their execution.
Consider
(define rand!
 (let ((seed 99))

(lambda ()
 (set! seed
 (mod (* seed 1001) 101101))
 seed
)))

221CS 538 Spring 2008©

Now in
(+ (f (rand!)) (g (rand!)))

we can’t evaluate (f (rand!))
and (g (rand!)) in parallel,
because of the side effect of set!
in rand!. In fact if we did, f and g
might see exactly the same
“random” number! (Why?)

• Granularity
Evaluating an expression
concurrently has an overhead (to
setup a concurrent computation).
Evaluating very simple
expressions (like (car x) or
(+ x 1)) in parallel isn’t worth
the overhead cost.
Estimating where the “break
even” threshold is may be tricky.

222CS 538 Spring 2008©

Utility of Concurrentization
Concurrentization has been most
successful in engineering and
scientific programs that are very
regular in structure, evaluating
large multidimensional arrays in
simple nested loops. Many very
complex simulations (weather,
fluid dynamics, astrophysics) are
run on multiprocessors after
extensive concurrentization.
Concurrentization has been far
less successful on non-scientific
programs that don’t use large
arrays manipulated in nested for
loops. A compiler, for example, is
difficult to run (in parallel) on a
multiprocessor.

223CS 538 Spring 2008©

Concurrentization within
Processors

Concurrentization is used
extensively within many modern
uniprocessors. Pentium and
PowerPC processors routinely
execute several instructions in
parallel if they are independent
(e.g., read and write distinct
registers). This are superscalar
processors.
These processors also routinely
speculate on execution paths,
“guessing” that a branch will (or
won’t) be taken even before the
branch is executed! This allows
for more concurrent execution
than if strictly “in order” execution
is done. These processors are
called “out of order” processors.

224CS 538 Spring 2008©

Adding Parallel Features to
Programming Languages.

It is common to take an existing
serial programming language and
add features that support
concurrent or parallel execution.
For example versions for Fortran
(like HPF—High Performance
Fortran) add a parallel do loop
that executes individual iterations
in parallel.
Java supports threads, which may
be executed in parallel.
Synchronization and mutual
exclusion are provided to avoid
unintended interactions.

225CS 538 Spring 2008©

Multilisp
Multilisp is a version of Scheme
augmented with three parallel
evaluation mechanisms:
• Pcall

Arguments to a call are evaluated
in parallel.

• Future
Evaluation of an expression starts
immediately. Rather than waiting
for completion of the computation,
a “future” is returned. This future
will eventually transform itself into
the result value (when the
computation completes)

• Delay
Evaluation is delayed until the
result value is really needed.

226CS 538 Spring 2008©

The Pcall Mechanism
Pcall is an extension to Scheme’s
function call mechanism that
causes the function and its
arguments to be all computed in
parallel.
Thus
(pcall F X Y Z)

causes F, X, Y and Z to all be
evaluated in parallel. When all
evaluations are done, F is called
with X, Y and Z as its parameters
(just as in ordinary Scheme).
Compare
(+ (* X Y) (* Y Z))

with
(pcall + (* X Y) (* Y Z))

227CS 538 Spring 2008©

It may not look like pcall can
give you that much parallel
execution, but in the context of
recursive definitions, the effect
can be dramatic.
Consider treemap, a version of
map that operates on binary trees
(S-expressions).

(define (treemap fct tree)

 (if (pair? tree)

 (pcall cons

 (treemap fct (car tree))

 (treemap fct (cdr tree))

)

 (fct tree)

))

228CS 538 Spring 2008©

Look at the execution of treemap
on the tree
 (((1 . 2) . (3 . 4)) .

 ((5 . 6) . (7 . 8)))

We start with one call that uses
the whole tree. This splits into
two parallel calls, one operating
on
((1 . 2) . (3 . 4))

and the other operating on
((5 . 6) . (7 . 8))

Each of these calls splits into 2
calls, and finally we have 8
independent calls, each operating
on the values 1 to 8.

