Reading Assignment

- MULTILISP: a language for concurrent symbolic computation, by Robert H. Halstead (linked from class web page)
Lazy Evaluation

Lazy evaluation is sometimes called “call by need.” We do an evaluation when a value is used; not when it is defined.

Scheme provides for lazy evaluation:

(delay expression)

Evaluation of expression is delayed. The call returns a “promise” that is essentially a lambda expression.

(force promise)

A promise, created by a call to delay, is evaluated. If the promise has already been evaluated, the value computed by the first call to force is reused.
Example:
Though `and` is predefined, writing a correct implementation for it is a bit tricky.

The obvious program

```scheme
(define (and A B)
  (if A
      B
      #f
   )
)
```

is incorrect since `B` is always evaluated whether it is needed or not. In a call like

```
(and (not (= i 0)) (> (/ j i) 10))
```

unnecessary evaluation might be fatal.
An argument to a function is *strict* if it is always used. Non-strict arguments may cause failure if evaluated unnecessarily.

With lazy evaluation, we can define a more robust `and` function:

```scheme
(define (and A B)
  (if A
      (force B)
      #f)
)
```

This is called as:

```scheme
(and (not (= i 0))
    (delay (> (/ j i) 10)))
```

Note that making the programmer remember to add a call to `delay` is unappealing.
Delayed evaluation also allows us a neat implementation of suspensions.

The following definition of an infinite list of integers clearly fails:

```scheme
(define (inflist i)
  (cons i (inflist (+ i 1))))
```

But with use of delays we get the desired effect in finite time:

```scheme
(define (inflist i)
  (cons i
    (delay (inflist (+ i 1)))))
```

Now a call like `(inflist 1)` creates

```
1 promise for (inflist 2)
```
We need to slightly modify how we explore suspended infinite lists. We can’t redefine \texttt{car} and \texttt{cdr} as these are far too fundamental to tamper with. Instead we’ll define \texttt{head} and \texttt{tail} to do much the same job:

\begin{verbatim}
(define head car)
(define (tail L)
 (force (cdr L)))
\end{verbatim}

\texttt{head} looks at \texttt{car} values which are fully evaluated.

\texttt{tail} forces one level of evaluation of a delayed \texttt{cdr} and saves the evaluated value in place of the suspension (promise).
Given

(define IL (inflist 1))

(head (tail IL)) returns 2 and expands IL into

1

2

promise for

(inflist 3)
Exploiting Parallelism

Conventional procedural programming languages are difficult to compile for multiprocessors.

Frequent assignments make it difficult to find independent computations.

Consider (in Fortran):

```
do 10  I = 1,1000
    X(I) = 0
    A(I) = A(I+1)+1
    B(I) = B(I-1)-1
    C(I) = (C(I-2) + C(I+2))/2
10 continue
```

This loop defines 1000 values for arrays X, A, B and C.
Which computations can be done in parallel, partitioning parts of an array to several processors, each operating independently?

- **X(I) = 0**
 Assignments to X can be readily parallelized.

- **A(I) = A(I+1) + 1**
 Each update of A(I) uses an A(I+1) value that is not yet changed. Thus a whole array of new A values can be computed from an array of “old” A values in parallel.

- **B(I) = B(I-1) - 1**
 This is less obvious. Each B(I) uses B(I-1) which is defined in terms of B(I-2), etc. Ultimately all new B values depend only on B(0) and I. That is, B(I) = B(0) - I. So this computation can be parallelized, but it takes a fair amount of insight to realize it.
\[C(I) = \frac{C(I-2) + C(I+2)}{2} \]

It is clear that even and odd elements of \(C \) don’t interact. Hence two processors could compute even and odd elements of \(C \) in parallel. Beyond this, since both earlier and later \(C \) values are used in each computation of an element, no further means of parallel evaluation is evident. Serial evaluation will probably be needed for even or odd values.
Exploiting Parallelism in Scheme

Assume we have a shared-memory multiprocessor. We might be able to assign different processors to evaluate various independent subexpressions. For example, consider

\[
\text{(map (lambda(x) (* 2 x)) '(1 2 3 4 5))}
\]

We might assign a processor to each list element and compute the lambda function on each concurrently:
How is Parallelism Found?

There are two approaches:

- We can use a “smart” compiler that is able to find parallelism in existing programs written in standard serial programming languages.

- We can add features to an existing programming language that allows a programmer to show where parallel evaluation is desired.
Concurrentization

Concurrentization (often called parallelization) is process of automatically finding potential concurrent execution in a serial program.

Automatically finding current execution is complicated by a number of factors:

- Data Dependence

Not all expressions are independent. We may need to delay evaluation of an operator or subprogram until its operands are available.

Thus in

\((+ (* \text{x} \text{y}) (* \text{y} \text{z}))\)

we can’t start the addition until both multiplications are done.
• Control Dependence
 Not all expressions need be (or should be) evaluated.
 In

 (if (= a 0)
 0
 (/ b a))

 we don’t want to do the division until we know \(a \neq 0 \).

• Side Effects
 If one expression can write a value that another expression
 might read, we probably will need to serialize their execution.
 Consider

 (define rand!
 (let ((seed 99))
 (lambda ()
 (set! seed
 (mod (* seed 1001) 101101))
 seed
))
)
)
Now in
\((+ (f (\text{rand}!)) (g (\text{rand}!)))\)
we can’t evaluate \((f (\text{rand}!))\) and \((g (\text{rand}!))\) in parallel, because of the side effect of \text{set!} in \text{rand!}. In fact if we did, \(f\) and \(g\) might see \textit{exactly} the same “random” number! (Why?)

- Granularity

Evaluating an expression concurrently has an overhead (to setup a concurrent computation). Evaluating very simple expressions (like \((\text{car} \ x)\) or \((+ x 1)\)) in parallel isn’t worth the overhead cost.

Estimating where the “break even” threshold is may be tricky.
Utility of Concurrentization

Concurrentization has been most successful in engineering and scientific programs that are very regular in structure, evaluating large multidimensional arrays in simple nested loops. Many very complex simulations (weather, fluid dynamics, astrophysics) are run on multiprocessors after extensive concurrentization.

Concurrentization has been far less successful on non-scientific programs that don’t use large arrays manipulated in nested for loops. A compiler, for example, is difficult to run (in parallel) on a multiprocessor.
Concurrentization within Processors

Concurrentization is used extensively within many modern uniprocessors. Pentium and PowerPC processors routinely execute several instructions in parallel if they are independent (e.g., read and write distinct registers). This are *superscalar* processors.

These processors also routinely *speculate* on execution paths, “guessing” that a branch will (or won’t) be taken even before the branch is executed! This allows for more concurrent execution than if strictly “in order” execution is done. These processors are called “out of order” processors.
Adding Parallel Features to Programming Languages.

It is common to take an existing serial programming language and add features that support concurrent or parallel execution. For example, versions for Fortran (like HPF—High Performance Fortran) add a parallel do loop that executes individual iterations in parallel.

Java supports threads, which may be executed in parallel. Synchronization and mutual exclusion are provided to avoid unintended interactions.
Multilisp

Multilisp is a version of Scheme augmented with three parallel evaluation mechanisms:

- **Pcall**
 Arguments to a call are evaluated in parallel.

- **Future**
 Evaluation of an expression starts immediately. Rather than waiting for completion of the computation, a “future” is returned. This future will eventually transform itself into the result value (when the computation completes)

- **Delay**
 Evaluation is delayed until the result value is really needed.
The Pcall Mechanism

Pcall is an extension to Scheme’s function call mechanism that causes the function and its arguments to be all computed in parallel.

Thus

\[(\text{pcall } F X Y Z)\]

causes \(F, X, Y\) and \(Z\) to all be evaluated in parallel. When all evaluations are done, \(F\) is called with \(X, Y\) and \(Z\) as its parameters (just as in ordinary Scheme).

Compare

\[(+ (* X Y) (* Y Z))\]

with

\[(\text{pcall } + (* X Y) (* Y Z))\]
It may not look like \texttt{pcall} can give you that much parallel execution, but in the context of recursive definitions, the effect can be dramatic.

Consider \texttt{treemap}, a version of \texttt{map} that operates on binary trees (S-expressions).

\begin{verbatim}
(define (treemap fct tree)
 (if (pair? tree)
 (pcall cons
 (treemap fct (car tree))
 (treemap fct (cdr tree))
)
 (fct tree)
)
)
\end{verbatim}
Look at the execution of \texttt{treemap} on the tree

\[((((1 . 2) . (3 . 4)) . ((5 . 6) . (7 . 8))))\]

We start with one call that uses the whole tree. This splits into two parallel calls, one operating on

\[((1 . 2) . (3 . 4))\]

and the other operating on

\[((5 . 6) . (7 . 8))\]

Each of these calls splits into 2 calls, and finally we have 8 independent calls, each operating on the values 1 to 8.
FUTURES

Evaluation of an expression as a future is the most interesting feature of Multilisp.

The call

(future expr)

begins the evaluation of expr. But rather than waiting for expr’s evaluation to complete, the call to future returns immediately with a new kind of data object—a future. This future is actually an “IOU.” When you try to use the value of the future, the computation of expr may or may not be completed. If it is, you see the value computed instead of the future—it automatically transforms itself. Thus evaluation of expr appears instantaneous.
If the computation of expr is not yet completed, you are forced to wait until computation is completed. Then you may use the value and resume execution.

But this is exactly what ordinary evaluation does anyway—you begin evaluation of expr and wait until evaluation completes and returns a value to you!

To see the usefulness of futures, consider the usual definition of Scheme’s map function:

\begin{verbatim}
(define (map f L)
 (if (null? L)
 ()
 (cons (f (car L))
 (map f (cdr L))))
)
\end{verbatim}
If we have a call
(map slow-function long-list)
where slow-function executes slowly and long-list is a large data structure, we can expect to wait quite a while for computation of the result list to complete.

Now consider fastmap, a version of map that uses futures:

(define (fastmap f L)
 (if (null? L)
 ()
 (cons
 (future (f (car L)))
 (fastmap f (cdr L))
))
)

Now look at the call
(fastmap slow-function long-list)
We will exploit a useful aspect of futures—they can be cons’ed together *without delay*, even if the computation isn’t completed yet.

Why? Well a `cons` just stores a pair of pointers, and it really doesn’t matter what the pointers reference (a future or an actual result value).

The call to `fastmap` can actually return before *any* of the call to `slow-function` have completed:

![Diagram](image-url)

future1

future2

future3

...
Eventually all the futures automatically transform themselves into data values:

```
answer1 → [ ] → [ ] → answer2 → [ ] → [ ] → answer3 → [ ] → [ ] → ... 
```

Note that `pcall` can be implemented using futures.
That is, instead of

\(\texttt{(pcall F X Y Z)} \)

we can use

\(\texttt{((future F)} \texttt{(future X) (future Y) (future Z))} \)

In fact the latter version is actually more parallel—execution of \(F \) can begin even if all the parameters aren’t completely evaluated.