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How is Parallelism Found?
There are two approaches:
• We can use a “smart” compiler that is

able to find parallelism in existing
programs written in standard serial
programming languages.

• We can add features to an existing
programming language that allows a
programmer to show where parallel
evaluation is desired.
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Concurrentization
Concurrentization (often called
parallelization) is process of
automatically finding potential
concurrent execution in a serial
program.
Automatically finding current
execution is complicated by a
number of factors:
• Data Dependence

Not all expressions are
independent. We may need to
delay evaluation of an operator or
subprogram until its operands are
available.
Thus in
(+ (* x y) (* y z))

we can’t start the addition until
both multiplications are done.
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• Control Dependence
Not all expressions need be (or
should be) evaluated.
In
(if (= a 0)

         0

    (/  b a))

we don’t want to do the division
until we know a ≠ 0.

• Side Effects
If one expression can write a
value that another expression
might read, we probably will need
to serialize their execution.
Consider
(define rand!
 (let ((seed 99))

(lambda ()
    (set! seed
      (mod (* seed 1001) 101101))
    seed
)) )
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Now in
(+ (f (rand!)) (g (rand!)))

we can’t evaluate (f (rand!))
and (g (rand!)) in parallel,
because of the side effect of set!
in rand!. In fact if we did, f and g
might see exactly the same
“random” number! (Why?)

• Granularity
Evaluating an expression
concurrently has an overhead (to
setup a concurrent computation).
Evaluating very simple
expressions (like (car x) or
(+ x 1)) in parallel isn’t worth
the overhead cost.
Estimating where the “break
even” threshold is may be tricky.
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Utility of Concurrentization
Concurrentization has been most
successful in engineering and
scientific programs that are very
regular in structure, evaluating
large multidimensional arrays in
simple nested loops. Many very
complex simulations (weather,
fluid dynamics, astrophysics) are
run on multiprocessors after
extensive concurrentization.
Concurrentization has been far
less successful on non-scientific
programs that don’t use large
arrays manipulated in nested for
loops. A compiler, for example, is
difficult to run (in parallel) on a
multiprocessor.
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Concurrentization within
Processors

Concurrentization is used
extensively within many modern
uniprocessors. Pentium and
PowerPC processors routinely
execute several instructions in
parallel if they are independent
(e.g., read and write distinct
registers). This are superscalar
processors.
These processors also routinely
speculate on execution paths,
“guessing” that a branch will (or
won’t) be taken even before the
branch is executed! This allows
for more concurrent execution
than if strictly “in order” execution
is done. These processors are
called “out of order” processors.
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Adding Parallel Features to
Programming Languages.

It is common to take an existing
serial programming language and
add features that support
concurrent or parallel execution.
For example versions for Fortran
(like HPF—High Performance
Fortran) add a parallel do loop
that executes individual iterations
in parallel.
Java supports threads, which may
be executed in parallel.
Synchronization and mutual
exclusion are provided to avoid
unintended interactions.
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Multilisp
Multilisp is a version of Scheme
augmented with three parallel
evaluation mechanisms:
• Pcall

Arguments to a call are evaluated
in parallel.

• Future
Evaluation of an expression starts
immediately. Rather than waiting
for completion of the computation,
a “future” is returned. This future
will eventually transform itself into
the result value (when the
computation completes)

• Delay
Evaluation is delayed until the
result value is really needed.
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The Pcall Mechanism
Pcall is an extension to Scheme’s
function call mechanism that
causes the function and its
arguments to be all computed in
parallel.
Thus
(pcall F X Y Z)

causes F, X, Y and Z to all be
evaluated in parallel. When all
evaluations are done, F is called
with X, Y and Z as its parameters
(just as in ordinary Scheme).
Compare
(+ (* X Y) (* Y Z))

with
(pcall + (* X Y) (* Y Z))
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It may not look like pcall can
give you that much parallel
execution, but in the context of
recursive definitions, the effect
can be dramatic.
Consider treemap, a version of
map that operates on binary trees
(S-expressions).

(define (treemap fct tree)

 (if (pair? tree)

  (pcall cons

    (treemap fct (car tree))

    (treemap fct (cdr tree))

  )

  (fct tree)

))
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Look at the execution of treemap
on the tree
  (((1 . 2) . (3 . 4)) .

   ((5 . 6) . (7 . 8)))

We start with one call that uses
the whole tree. This splits into
two parallel calls, one operating
on
((1 . 2) . (3 . 4))

and the other operating on
((5 . 6) . (7 . 8))

Each of these calls splits into 2
calls, and finally we have 8
independent calls, each operating
on the values 1 to 8.
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Futures
Evaluation of an expression as a
future is the most interesting
feature of Multilisp.
The call
(future expr)

begins the evaluation of expr.
But rather than waiting for expr’s
evaluation to complete, the call to
future returns immediately with
a new kind of data object—a
future. This future is actually an
“IOU.” When you try to use the
value of the future, the
computation of expr may or may
not be completed. If it is, you see
the value computed instead of the
future—it automatically
transforms itself. Thus evaluation
of expr appears instantaneous.
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If the computation of expr is not
yet completed, you are forced to
wait until computation is
completed. Then you may use the
value and resume execution.
But this is exactly what ordinary
evaluation does anyway—you
begin evaluation of expr and wait
until evaluation completes and
returns a value to you!

To see the usefulness of futures,
consider the usual definition of
Scheme’s map function:

(define (map f L)
  (if (null? L)
     ()
     (cons (f (car L))
           (map f (cdr L)))
  )
)
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If we have a call
(map slow-function long-list)

where slow-function executes
slowly and long-list is a large
data structure, we can expect to
wait quite a while for
computation of the result list to
complete.

Now consider fastmap, a version
of map that uses futures:
(define (fastmap f L)
  (if (null? L)
     ()
     (cons
       (future (f (car L)))
       (fastmap f (cdr L))
     )
  )
)

Now look at the call
(fastmap slow-function long-list)
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We will exploit a useful aspect of
futures—they can be cons’ed
together without delay, even if the
computation isn’t completed yet.
Why? Well a cons just stores a pair
of pointers, and it really doesn’t
matter what the pointers
reference (a future or an actual
result value).
The call to fastmap can actually
return before any of the call to
slow-function have completed:

future1

future2

future3 ...
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Eventually all the futures
automatically transform
themselves into data values:

Note that pcall can be
implemented using futures.

answer1

answer2

answer3 ...
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That is, instead of
(pcall F X Y Z)

we can use
((future F)

(future X) (future Y) (future Z))

In fact the latter version is
actually more parallel—execution
of F can begin even if all the
parameters aren’t completely
evaluated.


