
231CS 538 Spring 2008©

If we have a call
(map slow-function long-list)

where slow-function executes
slowly and long-list is a large
data structure, we can expect to
wait quite a while for
computation of the result list to
complete.

Now consider fastmap, a version
of map that uses futures:
(define (fastmap f L)
 (if (null? L)
 ()
 (cons
 (future (f (car L)))
 (fastmap f (cdr L))
)
)
)

Now look at the call
(fastmap slow-function long-list)

232CS 538 Spring 2008©

We will exploit a useful aspect of
futures—they can be cons’ed
together without delay, even if the
computation isn’t completed yet.
Why? Well a cons just stores a pair
of pointers, and it really doesn’t
matter what the pointers
reference (a future or an actual
result value).
The call to fastmap can actually
return before any of the call to
slow-function have completed:

future1

future2

future3 ...

233CS 538 Spring 2008©

Eventually all the futures
automatically transform
themselves into data values:

Note that pcall can be
implemented using futures.

answer1

answer2

answer3 ...

234CS 538 Spring 2008©

That is, instead of
(pcall F X Y Z)

we can use
((future F)

(future X) (future Y) (future Z))

In fact the latter version is
actually more parallel—execution
of F can begin even if all the
parameters aren’t completely
evaluated.

235CS 538 Spring 2008©

Another Example of Futures
The following function,
partition, will take a list and a
data value (called pivot).
partition will partition the list
into two sublists:
(a) Those elements ≤ pivot

(b) Those elements > pivot
(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

236CS 538 Spring 2008©

We want to add futures to
partition, but where?
It makes sense to use a future
when a computation may be
lengthy and we may not need to
use the value computed
immediately.
What computation fits that
pattern?
The computation of tail-part.
We’ll mark it in a blue box to show
we plan to evaluate it using a
future:

237CS 538 Spring 2008©

(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

But this one change isn’t enough!
We soon access the car and cdr
of tail-part, which forces us to
wait for its computation to
complete. To avoid this delay, we
can place the four references to
car or cdr of tail-part into
futures too:

238CS 538 Spring 2008©

(define (partition pivot L)
 (if (null? L)
 (cons () ())
 (let ((tail-part

(partition pivot (cdr L))))
 (if (<= (car L) pivot)
 (cons

(cons (car L) (car tail-part))
(cdr tail-part))

 (cons
(car tail-part))
(cons (car L) (cdr tail-part))

)
)))

239CS 538 Spring 2008©

Now we can build the initial part
of the partitioned list (that
involving pivot and (car L)
independently of the recursive call
of partition, which completes
the rest of the list.
For example,
(partition 17 '(5 3 8 ...))

creates a future (call it future1)
to compute
(partition 17 '(3 8 ...))

It also creates future2 to
compute (car tail-part) and
future3 to compute (cdr tail-
part). The call builds

5 future2

future3

240CS 538 Spring 2008©

Reading Assignment
• Introduction to Standard ML

 (linked from class web page)

• Webber: Chapters 5, 7, 9, 11

241CS 538 Spring 2008©

ML—Meta Language
SML is Standard ML, a popular ML
variant.
ML is a functional language that is
designed to be efficient and type-
safe. It demonstrates that a
functional language need not use
Scheme’s odd syntax and need
not bear the overhead of dynamic
typing.
SML’s features and innovations
include:
1. Strong, compile-time typing.
2. Automatic type inference
rather than user-supplied type
declarations.
3. Polymorphism, including “type
variables.”

242CS 538 Spring 2008©

4. Pattern-directed Programming
fun len([]) = 0
 | len(a::b) = 1+len(b);

5. Exceptions
6. First-class functions
7. Abstract Data Types

coin of int |
bill of int |
check of string*real;
val dime = coin(10);

A good ML reference is
“Elements of ML Programming,”
by Jeffrey Ullman
(Prentice Hall, 1998)

243CS 538 Spring 2008©

SML is Interactive
You enter a definition or
expression, and SML returns a
result with an inferred type.
The command
 use "file name";

loads a set of ML definitions from
a file.
For example (SML responses are
in blue):
21;
val it = 21 : int

(2 div 3);
val it = 0 : int

true;
val it = true : bool

"xyz";
val it = "xyz" : string

244CS 538 Spring 2008©

Basic SML Predefined Types
• Unit

Its only value is (). Type unit is
similar to void in C; it is used
where a type is needed, but no
“real” type is appropriate. For
example, a call to a write function
may return unit as its result.

• Integer
Constants are sequences of digits.
Negative values are prefixed with
a ~ rather than a - (- is a binary
subtraction operator). For
example, ~123 is negative 123.
Standard operators include
+ - * div mod
< > <= >= = <>

245CS 538 Spring 2008©

• Real
Both fractional (123.456) and
exponent forms (10e7) are
allowed. Negative signs and
exponents use ~ rather than -
(~10.0e~12).
Standard operators include
+ - * /
< > <= >=

Note that = and <> aren’t allowed!
(Why?)
Conversion routines include
real(int) to convert an int to a
real,
floor(real) to take the floor of
a real,
ceil(real) to take the ceiling of
a real.
round(real) to round a real,
trunc(real) to truncate a real.

246CS 538 Spring 2008©

For example, real(3) returns
3.0, floor(3.1) returns 3,
ceiling(3.3) returns 4,
round(~3.6) returns ~4,
trunc(3.9) returns 3.
Mixed mode expressions, like
1 + 2.5 aren’t allowed; you must
do explicit conversion, like
real(1) + 2.5

• Strings
Strings are delimited by double
quotes. Newlines are \n, tabs are
\t, and \" and \\ escape double
quotes and backslashes. E.g. "Bye
now\n" The ^ operator is
concatenation.
"abc" ^ "def" = "abcdef"

The usual relational operators are
provided: < > <= >= = <>

247CS 538 Spring 2008©

• Characters
Single characters are delimited by
double quotes and prefixed by a
#. For example, #"a" or #"\t". A
character is not a string of length
one. The str function may be
used to convert a character into a
string. Thus str(#"a") = "a"

• Boolean
Constants are true and false.
Operators include andalso (short-
circuit and), orelse (short-circuit
or), not, = and <>.
A conditional expression,
(if boolval v1 else v2) is
available.

248CS 538 Spring 2008©

Tuples
A tuple type, composed of two or
more values of any type is
available.
Tuples are delimited by
parentheses, and values are
separated by commas.
Examples include:
(1,2);
val it = (1,2) : int * int

("xyz",1=2);
val it = ("xyz",false) :
 string * bool

(1,3.0,false);
val it = (1,3.0,false) :
 int * real * bool

(1,2,(3,4));
val it = (1,2,(3,4)) :
int * int * (int * int)

249CS 538 Spring 2008©

Equality is checked
componentwise:
(1,2) = (0+1,1+1);
val it = true : bool

(1,2,3) = (1,2) causes a
compile-time type error (tuples
must be of the same length and
have corresponding types to be
compared).
#i selects the i-th component of
a tuple (counting from 1). Hence
#2(1,2,3);
val it = 2 : int

250CS 538 Spring 2008©

Lists
Lists are required to have a single
element type for all their
elements; their length is
unbounded.
Lists are delimited by [and] and
elements are separated by
commas.
Thus [1,2,3] is an integer list.
The empty (or null) list is [] or
nil.
The cons operator is ::
Hence [1,2,3] ≡ 1::2::3::[]

Lists are automatically typed by
ML:
[1,2];
val it = [1,2] : int list

251CS 538 Spring 2008©

Cons
Cons is an infix operator
represented as ::
The left operand of :: is any
value of type T.
The right operand of :: is any list
of type T list.
The result of :: is a list of type
T list.

Hence :: is polymorphic.
[] is the empty list. It has a type
'a list. The symbol 'a, read as
“alpha” or “tic a” is a type variable.
Thus [] is a polymorphic
constant.

