
240CS 538 Spring 2008©

Reading Assignment
• Introduction to Standard ML

 (linked from class web page)

• Webber: Chapters 5, 7, 9, 11

241CS 538 Spring 2008©

ML—Meta Language
SML is Standard ML, a popular ML
variant.
ML is a functional language that is
designed to be efficient and type-
safe. It demonstrates that a
functional language need not use
Scheme’s odd syntax and need
not bear the overhead of dynamic
typing.
SML’s features and innovations
include:
1. Strong, compile-time typing.
2. Automatic type inference
rather than user-supplied type
declarations.
3. Polymorphism, including “type
variables.”

242CS 538 Spring 2008©

4. Pattern-directed Programming
fun len([]) = 0
 | len(a::b) = 1+len(b);

5. Exceptions
6. First-class functions
7. Abstract Data Types

coin of int |
bill of int |
check of string*real;
val dime = coin(10);

A good ML reference is
“Elements of ML Programming,”
by Jeffrey Ullman
(Prentice Hall, 1998)

243CS 538 Spring 2008©

SML is Interactive
You enter a definition or
expression, and SML returns a
result with an inferred type.
The command
 use "file name";

loads a set of ML definitions from
a file.
For example (SML responses are
in blue):
21;
val it = 21 : int

(2 div 3);
val it = 0 : int

true;
val it = true : bool

"xyz";
val it = "xyz" : string

244CS 538 Spring 2008©

Basic SML Predefined Types
• Unit

Its only value is (). Type unit is
similar to void in C; it is used
where a type is needed, but no
“real” type is appropriate. For
example, a call to a write function
may return unit as its result.

• Integer
Constants are sequences of digits.
Negative values are prefixed with
a ~ rather than a - (- is a binary
subtraction operator). For
example, ~123 is negative 123.
Standard operators include
+ - * div mod
< > <= >= = <>

245CS 538 Spring 2008©

• Real
Both fractional (123.456) and
exponent forms (10e7) are
allowed. Negative signs and
exponents use ~ rather than -
(~10.0e~12).
Standard operators include
+ - * /
< > <= >=

Note that = and <> aren’t allowed!
(Why?)
Conversion routines include
real(int) to convert an int to a
real,
floor(real) to take the floor of
a real,
ceil(real) to take the ceiling of
a real.
round(real) to round a real,
trunc(real) to truncate a real.

246CS 538 Spring 2008©

For example, real(3) returns
3.0, floor(3.1) returns 3,
ceiling(3.3) returns 4,
round(~3.6) returns ~4,
trunc(3.9) returns 3.
Mixed mode expressions, like
1 + 2.5 aren’t allowed; you must
do explicit conversion, like
real(1) + 2.5

• Strings
Strings are delimited by double
quotes. Newlines are \n, tabs are
\t, and \" and \\ escape double
quotes and backslashes. E.g. "Bye
now\n" The ^ operator is
concatenation.
"abc" ^ "def" = "abcdef"

The usual relational operators are
provided: < > <= >= = <>

247CS 538 Spring 2008©

• Characters
Single characters are delimited by
double quotes and prefixed by a
#. For example, #"a" or #"\t". A
character is not a string of length
one. The str function may be
used to convert a character into a
string. Thus str(#"a") = "a"

• Boolean
Constants are true and false.
Operators include andalso (short-
circuit and), orelse (short-circuit
or), not, = and <>.
A conditional expression,
(if boolval v1 else v2) is
available.

248CS 538 Spring 2008©

Tuples
A tuple type, composed of two or
more values of any type is
available.
Tuples are delimited by
parentheses, and values are
separated by commas.
Examples include:
(1,2);
val it = (1,2) : int * int

("xyz",1=2);
val it = ("xyz",false) :
 string * bool

(1,3.0,false);
val it = (1,3.0,false) :
 int * real * bool

(1,2,(3,4));
val it = (1,2,(3,4)) :
int * int * (int * int)

249CS 538 Spring 2008©

Equality is checked
componentwise:
(1,2) = (0+1,1+1);
val it = true : bool

(1,2,3) = (1,2) causes a
compile-time type error (tuples
must be of the same length and
have corresponding types to be
compared).
#i selects the i-th component of
a tuple (counting from 1). Hence
#2(1,2,3);
val it = 2 : int

250CS 538 Spring 2008©

Lists
Lists are required to have a single
element type for all their
elements; their length is
unbounded.
Lists are delimited by [and] and
elements are separated by
commas.
Thus [1,2,3] is an integer list.
The empty (or null) list is [] or
nil.
The cons operator is ::
Hence [1,2,3] ≡ 1::2::3::[]

Lists are automatically typed by
ML:
[1,2];
val it = [1,2] : int list

251CS 538 Spring 2008©

Cons
Cons is an infix operator
represented as ::
The left operand of :: is any
value of type T.
The right operand of :: is any list
of type T list.
The result of :: is a list of type
T list.

Hence :: is polymorphic.
[] is the empty list. It has a type
'a list. The symbol 'a, read as
“alpha” or “tic a” is a type variable.
Thus [] is a polymorphic
constant.

252CS 538 Spring 2008©

List Equality
Two lists may be compared for
equality if they are of the same
type. Lists L1 and L2 are
considered equal if:
(1) They have the same number of
 elements
(2) Corresponding members of

 the two lists are equal.

List Operators
hd ≡ head of list operator ≈ car

tl ≡ tail of list operator ≈ cdr

null ≡ null list predicate ≈ null?

@ ≡ infix list append operator ≈
append

253CS 538 Spring 2008©

Records
Their general form is
{name1=val1, name2=val2, ... }

Field selector names are local to a
record.
For example:
{a=1,b=2};

val it = {a=1,b=2} :
 {a:int, b:int}

{a=1,b="xyz"};
val it = {a=1,b="xyz"} :
 {a:int, b:string}

{a=1.0,b={c=[1,2]}};
val it = {a=1.0,b={c=[1,2]}} :
{a:real, b:{c:int list}}

254CS 538 Spring 2008©

The order of fields is irrelevant;
equality is tested using field
names.
{a=1,b=2}={b=2,a=2-1};
val it = true : bool

#id extracts the field named id
from a record.
#b {a=1,b=2} ;

val it = 2 : int

255CS 538 Spring 2008©

Identifiers
There are two forms:
• Alphanumeric (excluding reserved

words)

Any sequence of letters, digits,
single quotes and underscores;
must begin with a letter or single
quote.
Case is significant. Identifiers that
begin with a single quote are type
variables.
Examples include:
abc a10 'polar sum_of_20

• Symbolic

Any sequence (except predefined
operators) of
! % & + - / : < = > ? @ \ ~ ^ | #
Usually used for user-defined
operators.
Examples include: ++ <=> !=

256CS 538 Spring 2008©

Comments
Of form
(* text *)

May cross line boundaries.

Declaration of Values
The basic form is
val id = expression;

This defines id to be bound to
expression; ML answers with the
name and value defined and the
inferred type.
For example
val x = 10*10;
val x = 100 : int

257CS 538 Spring 2008©

Redefinition of an identifier is OK,
but this is redefinition not
assignment;
Thus
val x = 100;

val x = (x=100);

is fine; there is no type error even
though the first x is an integer
and then it is a boolean.
val x = 100 : int

val x = true : bool

258CS 538 Spring 2008©

Examples
val x = 1;
val x = 1 : int

val z = (x,x,x);
val z = (1,1,1) : int * int * int

val L = [z,z];
val L = [(1,1,1),(1,1,1)] :
 (int * int * int) list

val r = {a=L};
val r = {a=[(1,1,1),(1,1,1)]} :
{a:(int * int * int) list}

After rebinding, the “nearest”
(most recent) binding is used.
The and symbol (not boolean and)
is used for simultaneous binding:
val x = 10;
val x = 10 : int

val x = true and y = x;
val x = true : bool

val y = 10 : int

259CS 538 Spring 2008©

Local definitions are temporary
value definitions:
local

 val x = 10

 in

 val u = x*x;

 end;
val u = 100 : int

Let bindings are used in
expressions:
let

 val x = 10

in
 5*x

end;
val it = 50 : int

260CS 538 Spring 2008©

Patterns
 Scheme (and most other
languages) use access or
decomposition functions to access
the components of a structured
object.
Thus we might write
(let ((h (car L) (t (cdr L)))

 body)

Here car and cdr are used as
access functions to locate the
parts of L we want to access.
In ML we can access components
of lists (or tuples, or records)
directly by using patterns. The
context in which the identifier
appears tells us the part of the
structure it references.

261CS 538 Spring 2008©

val x = (1,2);
val x = (1,2) : int * int

val (h,t) = x;
val h = 1 : int

val t = 2 : int

val L = [1,2,3];
val L = [1,2,3] : int list

val [v1,v2,v3] = L;
val v1 = 1 : int

val v2 = 2 : int

val v3 = 3 : int

val [1,x,3] = L;
val x = 2 : int

val [1,rest] = L;
(* This is illegal. Why? *)

val yy::rest = L;
val yy = 1 : int

val rest = [2,3] : int list

262CS 538 Spring 2008©

Wildcards
An underscore (_) may be used as
a “wildcard” or “don’t care”
symbol. It matches part of a
structure without defining an new
binding.
val zz::_ = L;
val zz = 1 : int

Pattern matching works in records
too.
val r = {a=1,b=2};
val r = {a=1,b=2} :
 {a:int, b:int}

val {a=va,b=vb} = r;
val va = 1 : int

val vb = 2 : int

val {a=wa,b=_}=r;
val wa = 1 : int

val {a=za, ...}=r;
val za = 1 : int

263CS 538 Spring 2008©

Patterns can be nested too.
val x = ((1,3.0),5);
val x = ((1,3.0),5) :
 (int * real) * int

val ((1,y),_)=x;
val y = 3.0 : real

