
257CS 538 Spring 2008©

Redefinition of an identifier is OK,
but this is redefinition not
assignment;
Thus
val x = 100;

val x = (x=100);

is fine; there is no type error even
though the first x is an integer
and then it is a boolean.
val x = 100 : int

val x = true : bool

258CS 538 Spring 2008©

Examples
val x = 1;
val x = 1 : int

val z = (x,x,x);
val z = (1,1,1) : int * int * int

val L = [z,z];
val L = [(1,1,1),(1,1,1)] :
 (int * int * int) list

val r = {a=L};
val r = {a=[(1,1,1),(1,1,1)]} :
{a:(int * int * int) list}

After rebinding, the “nearest”
(most recent) binding is used.
The and symbol (not boolean and)
is used for simultaneous binding:
val x = 10;
val x = 10 : int

val x = true and y = x;
val x = true : bool

val y = 10 : int

259CS 538 Spring 2008©

Local definitions are temporary
value definitions:
local

 val x = 10

 in

 val u = x*x;

 end;
val u = 100 : int

Let bindings are used in
expressions:
let

 val x = 10

in
 5*x

end;
val it = 50 : int

260CS 538 Spring 2008©

Patterns
 Scheme (and most other
languages) use access or
decomposition functions to access
the components of a structured
object.
Thus we might write
(let ((h (car L) (t (cdr L)))

 body)

Here car and cdr are used as
access functions to locate the
parts of L we want to access.
In ML we can access components
of lists (or tuples, or records)
directly by using patterns. The
context in which the identifier
appears tells us the part of the
structure it references.

261CS 538 Spring 2008©

val x = (1,2);
val x = (1,2) : int * int

val (h,t) = x;
val h = 1 : int

val t = 2 : int

val L = [1,2,3];
val L = [1,2,3] : int list

val [v1,v2,v3] = L;
val v1 = 1 : int

val v2 = 2 : int

val v3 = 3 : int

val [1,x,3] = L;
val x = 2 : int

val [1,rest] = L;
(* This is illegal. Why? *)

val yy::rest = L;
val yy = 1 : int

val rest = [2,3] : int list

262CS 538 Spring 2008©

Wildcards
An underscore (_) may be used as
a “wildcard” or “don’t care”
symbol. It matches part of a
structure without defining an new
binding.
val zz::_ = L;
val zz = 1 : int

Pattern matching works in records
too.
val r = {a=1,b=2};
val r = {a=1,b=2} :
 {a:int, b:int}

val {a=va,b=vb} = r;
val va = 1 : int

val vb = 2 : int

val {a=wa,b=_}=r;
val wa = 1 : int

val {a=za, ...}=r;
val za = 1 : int

263CS 538 Spring 2008©

Patterns can be nested too.
val x = ((1,3.0),5);
val x = ((1,3.0),5) :
 (int * real) * int

val ((1,y),_)=x;
val y = 3.0 : real

264CS 538 Spring 2008©

Functions
Functions take a single argument
(which can be a tuple).
Function calls are of the form
function_name argument;

For example
size "xyz";

cos 3.14159;

The more conventional form
size("xyz"); or cos(3.14159);

is OK (the parentheses around the
argument are allowed, but
unnecessary).
The form (size "xyz") or
(cos 3.14159)

is OK too.

265CS 538 Spring 2008©

Note that the call
plus(1,2);

passes one argument, the tuple
(1,2)

to plus.
The call dummy();
passes one argument, the unit
value, to dummy.
All parameters are passed by
value.

266CS 538 Spring 2008©

Function Types
The type of a function in ML is
denoted as T1->T2. This says that
a parameter of type T1 is mapped
to a result of type T2.
The symbol fn denotes a value
that is a function.
Thus
size;
val it = fn : string -> int

not;
val it = fn : bool -> bool

Math.cos;
val it = fn : real -> real

(Math is an ML structure—an
external library member that
contains separately compiled
definitions).

267CS 538 Spring 2008©

User-Defined Functions
The general form is
fun name arg = expression;

ML answers back with the name
defined, the fact that it is a
function (the fn symbol) and its
inferred type.
For example,
fun twice x = 2*x;
val twice = fn : int -> int

fun twotimes(x) = 2*x;
val twotimes = fn : int -> int

fun fact n =

 if n=0

 then 1

 else n*fact(n-1);
val fact = fn : int -> int

268CS 538 Spring 2008©

fun plus(x,y):int = x+y;
val plus = fn : int * int -> int

The :int suffix is a type
constraint.
It is needed to help ML decide that
+ is integer plus rather than real
plus.

269CS 538 Spring 2008©

Patterns In Function
Definitions

The following defines a predicate
that tests whether a list, L is null
(the predefined null function
already does this).
fun isNull L =
 if L=[] then true else
false;
val isNull = fn : 'a list -> bool

However, we can decompose the
definition using patterns to get a
simpler and more elegant
definition:
 fun isNull [] = true

 | isNull(_::_) = false;
val isNull = fn : 'a list -> bool

270CS 538 Spring 2008©

The “|” divides the function
definition into different argument
patterns; no explicit conditional
logic is needed. The definition
that matches a particular actual
parameter is automatically
selected.
fun fact(1) = 1

 | fact(n) = n*fact(n-1);
val fact = fn : int -> int

If patterns that cover all possible
arguments aren’t specified, you
may get a run-time Match
exception.
If patterns overlap you may get a
warning from the compiler.

271CS 538 Spring 2008©

fun append([],L) = L

 | append(hd::tl,L) =
hd::append(tl,L);

val append = fn :
 'a list * 'a list -> 'a list

If we add the pattern
append(L,[]) = L

we get a redundant pattern
warning (Why?)
fun append ([],L) = L

 | append(hd::tl,L) =
hd::append(tl,L)

 | append(L,[]) = L;
stdIn:151.1-153.20 Error: match
redundant

 (nil,L) => ...

 (hd :: tl,L) => ...

 --> (L,nil) => ...

272CS 538 Spring 2008©

But a more precise decomposition
is fine:
fun append ([],L) = L

| append(hd::tl,hd2::tl2) =
 hd::append(tl,hd2::tl2)

 | append(hd::tl,[]) =
 hd::tl;
val append = fn :
 'a list * 'a list -> 'a list

273CS 538 Spring 2008©

Function Types Can be
Polytypes

Recall that 'a, 'b, ... represent
type variables. That is, any valid
type may be substituted for them
when checking type correctness.
ML said the type of append is
val append = fn :
 'a list * 'a list -> 'a list

Why does 'a appear three times?
We can define eitherNull, a
predicate that determines
whether either of two lists is null
as
fun eitherNull(L1,L2) =
 null(L1) orelse null(L2);
val eitherNull =
 fn : ’a list * ’b list -> bool

Why are both 'a and 'b used in
eitherNull’s type?

274CS 538 Spring 2008©

Currying
ML chooses the most general
(least-restrictive) type possible for
user-defined functions.
Functions are first-class objects,
as in Scheme.
The function definition
fun f x y = expression;

defines a function f (of x) that
returns a function (of y).
Reducing multiple argument
functions to a sequence of one
argument functions is called
currying (after Haskell Curry, a
mathematician who popularized
the approach).

275CS 538 Spring 2008©

Thus
fun f x y = x :: [y];
val f = fn : 'a -> 'a -> 'a list

says that f takes a parameter x,
of type 'a, and returns a function
(of y, whose type is 'a) that
returns a list of 'a.
Contrast this with the more
conventional
fun g(x,y) = x :: [y];
val g = fn : 'a * 'a -> 'a list

Here g takes a pair of arguments
(each of type 'a) and returns a
value of type 'a list.
The advantage of currying is that
we can bind one argument and
leave the remaining argument(s)
free.

276CS 538 Spring 2008©

For example
f(1);

is a legal call. It returns a function
of type
fn : int -> int list

The function returned is
equivalent to
fun h b = 1 :: [b];
val h = fn : int -> int list

277CS 538 Spring 2008©

Map Revisited
ML supports the map function,
which can be defined as
fun map(f,[]) = []
 | map(f,x::y) =
 (f x) :: map(f,y);
val map =
fn : ('a -> 'b) * 'a list -> 'b list

This type says that map takes a
pair of arguments. One is a
function from type 'a to type 'b.
The second argument is a list of
type 'a. The result is a list of type
'b.
In curried form map is defined as
fun map f [] = []
 | map f (x::y) =
 (f x) :: map f y;
val map =
 fn : ('a -> 'b) ->
 'a list -> 'b list

278CS 538 Spring 2008©

This type says that map takes one
argument that is a function from
type 'a to type 'b. It returns a
function that takes an argument
that is a list of type 'a and returns
a list of type 'b.
The advantage of the curried form
of map is that we can now use map
to create “specialized” functions
in which the function that is
mapped is fixed.
For example,
val neg = map not;
val neg =
 fn : bool list -> bool list

neg [true,false,true];
val it = [false,true,false] :
 bool list

279CS 538 Spring 2008©

Power Sets Revisited
Let’s compute power sets in ML.
We want a function pow that takes
a list of values, viewed as a set,
and which returns a list of lists.
Each sublist will be one of the
possible subsets of the original
argument.
For example,
pow [1,2] = [[1,2],[1],[2],[]]

We first define a version of cons
in curried form:
fun cons h t = h::t;
val cons = fn :
 'a -> 'a list -> 'a list

280CS 538 Spring 2008©

Now we define pow. We define the
powerset of the empty list, [], to
be [[]]. That is, the power set of
the empty set is set that contains
only the empty set.
For a non-empty list, consisting of
h::t, we compute the power set
of t, which we call pset. Then the
power set for h::t is just h
distributed through pset
appended to pset.
We distribute h through pset very
elegantly: we just map the
function (cons h) to pset. (cons
h) adds h to the head of any list it
is given. Thus mapping (cons h)
to pset adds h to all lists in pset.

281CS 538 Spring 2008©

The complete definition is simply
fun pow [] = [[]]
 | pow (h::t) =

 let

 val pset = pow t

 in

 (map (cons h) pset) @ pset

 end;
val pow =
 fn : 'a list -> 'a list list

Let’s trace the computation of
pow [1,2].
Here h = 1 and t = [2]. We need
to compute pow [2].
Now h = 2 and t = [].
We know pow [] = [[]],
so pow [2] =
(map (cons 2) [[]])@[[]] =
([[2]])@[[]] = [[2],[]]

282CS 538 Spring 2008©

Therefore pow [1,2] =

(map (cons 1) [[2],[]])
@[[2],[]] =

[[1,2],[1]]@[[2],[]] =
[[1,2],[1],[2],[]]

