
274CS 538 Spring 2008©

Currying
ML chooses the most general
(least-restrictive) type possible for
user-defined functions.
Functions are first-class objects,
as in Scheme.
The function definition
fun f x y = expression;

defines a function f (of x) that
returns a function (of y).
Reducing multiple argument
functions to a sequence of one
argument functions is called
currying (after Haskell Curry, a
mathematician who popularized
the approach).

275CS 538 Spring 2008©

Thus
fun f x y = x :: [y];
val f = fn : 'a -> 'a -> 'a list

says that f takes a parameter x,
of type 'a, and returns a function
(of y, whose type is 'a) that
returns a list of 'a.
Contrast this with the more
conventional
fun g(x,y) = x :: [y];
val g = fn : 'a * 'a -> 'a list

Here g takes a pair of arguments
(each of type 'a) and returns a
value of type 'a list.
The advantage of currying is that
we can bind one argument and
leave the remaining argument(s)
free.

276CS 538 Spring 2008©

For example
f(1);

is a legal call. It returns a function
of type
fn : int -> int list

The function returned is
equivalent to
fun h b = 1 :: [b];
val h = fn : int -> int list

277CS 538 Spring 2008©

Map Revisited
ML supports the map function,
which can be defined as
fun map(f,[]) = []
 | map(f,x::y) =
 (f x) :: map(f,y);
val map =
fn : ('a -> 'b) * 'a list -> 'b list

This type says that map takes a
pair of arguments. One is a
function from type 'a to type 'b.
The second argument is a list of
type 'a. The result is a list of type
'b.
In curried form map is defined as
fun map f [] = []
 | map f (x::y) =
 (f x) :: map f y;
val map =
 fn : ('a -> 'b) ->
 'a list -> 'b list

278CS 538 Spring 2008©

This type says that map takes one
argument that is a function from
type 'a to type 'b. It returns a
function that takes an argument
that is a list of type 'a and returns
a list of type 'b.
The advantage of the curried form
of map is that we can now use map
to create “specialized” functions
in which the function that is
mapped is fixed.
For example,
val neg = map not;
val neg =
 fn : bool list -> bool list

neg [true,false,true];
val it = [false,true,false] :
 bool list

279CS 538 Spring 2008©

Power Sets Revisited
Let’s compute power sets in ML.
We want a function pow that takes
a list of values, viewed as a set,
and which returns a list of lists.
Each sublist will be one of the
possible subsets of the original
argument.
For example,
pow [1,2] = [[1,2],[1],[2],[]]

We first define a version of cons
in curried form:
fun cons h t = h::t;
val cons = fn :
 'a -> 'a list -> 'a list

280CS 538 Spring 2008©

Now we define pow. We define the
powerset of the empty list, [], to
be [[]]. That is, the power set of
the empty set is set that contains
only the empty set.
For a non-empty list, consisting of
h::t, we compute the power set
of t, which we call pset. Then the
power set for h::t is just h
distributed through pset
appended to pset.
We distribute h through pset very
elegantly: we just map the
function (cons h) to pset. (cons
h) adds h to the head of any list it
is given. Thus mapping (cons h)
to pset adds h to all lists in pset.

281CS 538 Spring 2008©

The complete definition is simply
fun pow [] = [[]]
 | pow (h::t) =

 let

 val pset = pow t

 in

 (map (cons h) pset) @ pset

 end;
val pow =
 fn : 'a list -> 'a list list

Let’s trace the computation of
pow [1,2].
Here h = 1 and t = [2]. We need
to compute pow [2].
Now h = 2 and t = [].
We know pow [] = [[]],
so pow [2] =
(map (cons 2) [[]])@[[]] =
([[2]])@[[]] = [[2],[]]

282CS 538 Spring 2008©

Therefore pow [1,2] =

(map (cons 1) [[2],[]])
@[[2],[]] =

[[1,2],[1]]@[[2],[]] =
[[1,2],[1],[2],[]]

283CS 538 Spring 2008©

Composing Functions
We can define a composition
function that composes two
functions into one:
fun comp (f,g)(x) = f(g(x));
val comp = fn :
('a -> 'b) * ('c -> 'a) ->
 'c -> 'b

In curried form we have
fun comp f g x = f(g(x));

val comp = fn :
('a -> 'b) ->
('c -> 'a) -> 'c -> 'b

For example,
fun sqr x:int = x*x;

val sqr = fn : int -> int

comp sqr sqr;

val it = fn : int -> int

comp sqr sqr 3;

val it = 81 : int

284CS 538 Spring 2008©

In SML o (lower-case O) is the infix
composition operator.
Hence
sqr o sqr ≡ comp sqr sqr

285CS 538 Spring 2008©

Lambda Terms
ML needs a notation to write
down unnamed (anonymous)
functions, similar to the lambda
expressions Scheme uses.
That notation is
fn arg => body;

For example,
val sqr = fn x:int => x*x;
val sqr = fn : int -> int

In fact the notation used to define
functions,
fun name arg = body;

is actually just an abbreviation for
the more verbose
val name = fn arg => body;

286CS 538 Spring 2008©

An anonymous function can be
used wherever a function value is
needed.
For example,
map (fn x => [x]) [1,2,3];
val it =
[[1],[2],[3]] : int list list

We can use patterns too:
(fn [] => []
 |(h::t) => h::h::t);
val it = fn : 'a list -> 'a list

(What does this function do?)

287CS 538 Spring 2008©

Polymorphism vs. Overloading
ML supports polymorphism.
A function may accept a polytype
(a set of types) rather than a
single fixed type.
In all cases, the same function
definition is used. Details of the
supplied type are irrelevant and
may be ignored.
For example,
fun id x = x;
val id = fn : 'a -> 'a

fun toList x = [x];
val toList = fn : 'a -> 'a list

288CS 538 Spring 2008©

Overloading, as in C++ and Java,
allows alternative definitions of
the same method or operator,
with selection based on type.
Thus in Java + may represent
integer addition, floating point
addition or string concatenation,
even though these are really
rather different operations.
In ML +, -, * and = are
overloaded.
When = is used (to test equality),
ML deduces that an equality type
is required. (Most,but not all, types
can be compared for equality).
When ML decides an equality type
is needed, it uses a type variable
that begins with two tics rather
than one.
fun eq(x,y) = (x=y);
val eq = fn : ''a * ''a -> bool

289CS 538 Spring 2008©

Defining New Types in ML
We can create new names for
existing types (type
abbreviations) using
type id = def;

For example,
type triple = int*real*string;
type triple = int * real * string

type rec1=
 {a:int,b:real,c:string};
type rec1 =
 {a:int, b:real, c:string}

type 'a triple3 = 'a*'a*'a;
type 'a triple3 = 'a * 'a * 'a

type intTriple = int triple3;
type intTriple = int triple3

These type definitions are
essentiality macro-like name
substitutions.

290CS 538 Spring 2008©

The Datatype Mechanism
The datatype mechanism
specifies new data types using
value constructors.
For example,
datatype color = red|blue|green;

datatype color = blue | green |
red

Pattern matching works too using
the type’s constructors:
fun translate red = "rot"
 | translate blue = "blau"
 | translate green = "gruen";
val translate =
 fn : color -> string
fun jumble red = blue
 | jumble blue = green
 | jumble green = red;

val jumble = fn : color -> color

translate (jumble green);

val it = "rot" : string

291CS 538 Spring 2008©

SML Examples
Source code for most of the SML
examples presented here may be
found in
~cs538-1/public/sml/class.sml

292CS 538 Spring 2008©

Parameterized Constructors
The constructors used to define
data types may be parameterized:
datatype money =
 none
 | coin of int

 | bill of int

 | iou of real * string;
datatype money =
 bill of int | coin of int
 | iou of real * string | none

Now expressions like coin(25)
or bill(5) or
iou(10.25,"Lisa") represent
valid values of type money.

293CS 538 Spring 2008©

We can also define values and
functions of type money:
val dime = coin(10);
val dime = coin 10 : money

val deadbeat =
iou(25.00,"Homer Simpson");
val deadbeat =
 iou (25.0,"Homer Simpson") :
 money

fun amount(none) = 0.0

 | amount(coin(cents)) =
 real(cents)/100.0

 | amount(bill(dollars)) =
 real(dollars)

 | amount(iou(amt,_)) =
 0.5*amt;
 val amount = fn : money -> real

294CS 538 Spring 2008©

Polymorphic Datatypes
A user-defined data type may be
polymorphic. An excellent
example is
datatype 'a option =
 none | some of 'a;
datatype 'a option =
 none | some of 'a

val zilch = none;
val zilch = none : 'a option

val mucho =some(10e10);
val mucho =
some 100000000000.0 : real option

type studentInfo =
 {name:string,
 ssNumber:int option};
type studentInfo = {name:string,
ssNumber:int option}

295CS 538 Spring 2008©

val newStudent =
{name="Mystery Man",
 ssNumber=none}:studentInfo;
val newStudent =
{name="Mystery Man",
 ssNumber=none} : studentInfo

296CS 538 Spring 2008©

Datatypes may be Recursive
Recursive datatypes allow linked
structures without explicit
pointers.
datatype binTree =
 null
| leaf

| node of binTree * binTree;
datatype binTree =
leaf | node of binTree * binTree
 | null

fun size(null) = 0

 | size(leaf) = 1

 | size(node(t1,t2)) =
 size(t1)+size(t2) + 1
val size = fn : binTree -> int

297CS 538 Spring 2008©

Recursive Datatypes may be
Polymorphic

datatype 'a binTree =
 null
| leaf of 'a
| node of 'a binTree * 'a binTree

datatype 'a binTree =
 leaf of 'a |
 node of 'a binTree * 'a binTree
 | null

fun frontier(null) = []
 | frontier(leaf(v)) = [v]
 | frontier(node(t1,t2)) =
 frontier(t1) @ frontier(t2)

val frontier =
 fn : 'a binTree -> 'a list

298CS 538 Spring 2008©

We can model n-ary trees by using
lists of subtrees:
datatype 'a Tree =
 null
| leaf of 'a
| node of 'a Tree list;
datatype 'a Tree = leaf of 'a |
node of 'a Tree list | null

fun frontier(null) = []

 | frontier(leaf(v)) = [v]

 | frontier(node(h::t)) =
 frontier(h) @
frontier(node(t))

 | frontier(node([])) = []
val frontier = fn :
 'a Tree -> 'a list

