
303CS 538 Spring 2008©

Why are abstract data types
useful?
Because they hide an
implementation of a type from a
user, allowing implementation
changes without any impact on
user programs.
Consider a simple implementation
of queues:
abstype 'a queue =
 q of 'a list

with

 val Null = q([])

fun front(q(h::_)) = h
 fun rm(q(_::t)) = q(t)
 fun enter(v,q(L)) =
 q(rev(v::rev(L)))

end
type 'a queue

val Null = - : 'a queue

val front = fn : 'a queue -> 'a

304CS 538 Spring 2008©

val rm =
 fn : 'a queue -> 'a queue

val enter =
 fn : 'a * 'a queue -> 'a queue

This implementation of queues is
valid, but somewhat inefficient. In
particular to enter a new value
onto the rear end of a queue, we
do the following:
fun enter(v,q(L)) =
 q(rev(v::rev(L)))

 We reverse the list that
implements the queue, add the
new value to the head of the
reversed queue then reverse the
list a second time.

305CS 538 Spring 2008©

A more efficient (but less obvious)
implementation of a queue is to
store it as two lists. One list
represents the “front” of the
queue. It is from this list that we
extract the front value, and from
which we remove elements.
The other list represents the
“back” of the queue (in reversed
order). We add elements to the
rear of the queue by adding
elements to the front of the list.
From time to time, when the front
list becomes null, we “promote”
the rear list into the front list (by
reversing it). Now access to both
the front and the back of the
queue is fast and direct. The new
implementation is:

306CS 538 Spring 2008©

abstype 'a queue =
 q of 'a list * 'a list

with

 val Null = q([],[])

fun front(q(h::_,_)) = h
 | front(q([],L)) =
 front(q(rev(L),[]))
 fun rm(q(_::t,L)) = q(t,L)
 | rm(q([],L)) =
 rm(q(rev(L),[]))
 fun enter(v,q(L1,L2)) =
 q(L1,v::L2)

end

type 'a queue

val Null = - : 'a queue
val front = fn :
'a queue -> 'a

val rm = fn :
'a queue -> 'a queue

val enter = fn :
'a * 'a queue -> 'a queue

307CS 538 Spring 2008©

From the user’s point of view, the
two implementations are identical
(they export exactly the same set
of values and functions). Hence
the new implementation can
replace the old implementation
without any impact at all to the
user (except, of course,
performance!).

308CS 538 Spring 2008©

Exception Handling
Our definitions of stacks and
queues are incomplete.
Reconsider our definition of
stack:
abstype 'a stack =
 stk of 'a list

with

 val Null = stk([])

 fun empty(stk([])) = true

 | empty(stk(_::_)) = false

fun top(stk(h::_)) = h
 fun pop(stk(_::t)) = stk(t)
 fun push(v,stk(L)) =
 stk(v::L)

end

What happens if we evaluate
top(Null);

309CS 538 Spring 2008©

We see “match failure” since our
definition of top is incomplete!
In ML we can raise an
exception if an illegal or
unexpected operation occurs.
Asking for the top of an empty
stack ought to raise an
exception since the requested
value does not exist.
ML contains a number of
predefined exceptions,
including
Match Empty Div Overflow

(exception names usually
begin with a capital letter).
Predefined exception are raised
by illegal values or operations.
If they are not caught, the run-
time prints an error message.

310CS 538 Spring 2008©

fun f(1) = 2;
val f = fn : int -> int

f(2);
uncaught exception nonexhaustive
match failure

hd [];
uncaught exception Empty

1000000*1000000;
uncaught exception overflow

(1 div 0);
uncaught exception divide by zero

1.0/0.0;

val it = inf : real

(inf is the IEEE floating-point
standard “infinity” value)

311CS 538 Spring 2008©

User Defined Exceptions
New exceptions may be
defined as
exception name;

or
exception name of type;

For example
exception IsZero;
exception IsZero

exception NegValue of real;
exception NegValue of real

312CS 538 Spring 2008©

Exceptions May be Raised
The raise statement raises
(throws) an exception:
raise exceptionName;

or
raise exceptionName(expr);

For example
fun divide(a,0) = raise IsZero
 | divide(a,b) = a div b;
val divide =
 fn : int * int -> int

divide(10,3);
val it = 3 : int

divide(10,0);
uncaught exception IsZero

313CS 538 Spring 2008©

val sqrt = Real.Math.sqrt;
val sqrt = fn : real -> real

fun sqroot(x) =
 if x < 0.0
 then raise NegValue(x)
 else sqrt(x);
val sqroot = fn : real -> real

sqroot(2.0);
val it = 1.41421356237 : real

sqroot(~2.0);
uncaught exception NegValue

314CS 538 Spring 2008©

Exception Handlers
You may catch an exception by
defining a handler for it:
(expr) handle exception1 => val1
 || exception2 => val2
 || ... ;

For example,
(sqroot ~100.0)
 handle NegValue(v) =>
 (sqrt (~v));
val it = 10.0 : real

315CS 538 Spring 2008©

Stacks Revisited
We can add an exception,
EmptyStk, to our earlier stack
type to handle top or pop
operations on an empty stack:
abstype 'a stack = stk of 'a list
with
 val Null = stk([])
 exception EmptyStk
 fun empty(stk([])) = true
 | empty(stk(_::_)) = false
 fun top(stk(h::_)) = h
 | top(stk([])) =
 raise EmptyStk
 fun pop(stk(_::t)) = stk(t)
 | pop(stk([])) =
 raise EmptyStk
 fun push(v,stk(L)) =
 stk(v::L)
end

316CS 538 Spring 2008©

type 'a stack
val Null = - : 'a stack
exception EmptyStk
val empty = fn : 'a stack -> bool
val top = fn : 'a stack -> 'a
val pop = fn :
 'a stack -> 'a stack
val push = fn : 'a * 'a stack ->
'a stack

pop(Null);
uncaught exception EmptyStk
top(Null) handle EmptyStk => 0;
val it = 0 : int

317CS 538 Spring 2008©

User-Defined Operators
SML allows users to define
symbolic operators composed
of non-alphanumeric
characters. This means
operator-like symbols can be
created and used. Care must be
taken to avoid predefined
operators (like +, -, ^, @, etc.).
If we wish, we can redo our
stack definition using symbols
rather than identifiers. We
might use the following
symbols:
top |=

pop <==

push ==>

null <@>

empty <?>

318CS 538 Spring 2008©

We can have expressions like
<?> <@>;
val it = true : bool

|= (==> (1,<@>));
val it = 1 : int

Binary functions, like ==> (push)
are much more readable if they
are infix. That is, we’d like to be
able to write
1 ==> 2+3 ==> <@>

which pushes 2+3, then 1 onto
an empty stack.
To make a function (either
identifier or symbolic) infix
rather than prefix we use the
definition
infix level name

or
infixr level name

319CS 538 Spring 2008©

level is an integer representing
the “precedence” level of the
infix operator. 0 is the lowest
precedence level; higher
precedence operators are
applied before lower
precedence operators (in the
absence of explicit
parentheses).
infix defines a left-associative
operator (groups from left to
right). infixr defines a right-
associative operator (groups
from right to left).
Thus
fun cat(L1,L2) = L1 @ L2;

infix 5 cat

makes cat a left associative
infix operator at the same

320CS 538 Spring 2008©

precedence level as @. We can
now write
[1,2] cat [3,4,5] cat [6,7];
val it = [1,2,3,4,5,6,7] : int list

The standard predefined
operators have the following
precedence levels:
Level Operator
3 o

4 = <> < > <= >=

5 :: @

6 + - ^

7 * / div mod

321CS 538 Spring 2008©

If we define ==> (push) as
infixr 2 ==>

then
1 ==> 2+3 ==> <@>

will work as expected,
evaluating expressions like 2+3
before doing any pushes, with
pushes done right to left.

322CS 538 Spring 2008©

abstype 'a stack =
 stk of 'a list

with

 val <@> = stk([])

 exception emptyStk

 fun <?>(stk([])) = true

 | <?>(stk(_::_)) = false

 fun |=(stk(h::_)) = h

 | |=(stk([])) =
 raise emptyStk

 fun <==(stk(_::t)) = stk(t)

 | <==(stk([])) =
 raise emptyStk

 fun ==>(v,stk(L)) =
 stk(v::L)

 infixr 2 ==>

end

323CS 538 Spring 2008©

type 'a stack

val <@> = - : 'a stack

exception emptyStk

val <?> = fn : 'a stack -> bool

val |= = fn : 'a stack -> 'a

val <== = fn :
 'a stack -> 'a stack

val ==> = fn : 'a * 'a stack ->
'a stack

infixr 2 ==>

Now we can write
val myStack =
 1 ==> 2+3 ==> <@>;
val myStack = - : int stack

|= myStack;
val it = 1 : int

|= (<== myStack);
val it = 5 : int

324CS 538 Spring 2008©

Using Infix Operators as
Values

Sometimes we simply want to
use an infix operator as a
symbol whose value is a
function.
For example, given
fun dupl f v = f(v,v);
val dupl =
fn : ('a * 'a -> 'b) -> 'a -> 'b

we might try the call
dupl ^ "abc";

This fails because SML tries to
parse dupl and "abc" as the
operands of ^.
To pass an operator as an
ordinary function value, we
prefix it with op which tells the

325CS 538 Spring 2008©

SML compiler that the following
symbol is an infix operator.

Thus
dupl op ^ "abc";
val it = "abcabc" : string

works fine.

326CS 538 Spring 2008©

The Case Expression
ML contains a case expression
patterned on switch and case
statements found in other
languages.
As in function definitions,
patterns are used to choose
among a variety of values.
The general form of the case is
case expr of

 pattern1 => expr1|

 patternn => expr2|

 ...

 patternn => exprn;

If no pattern matches, a Match
exception is thrown.

327CS 538 Spring 2008©

It is common to use _ (the
wildcard) as the last pattern in
a case.
Examples include
case c of

 red => "rot" |

 blue => "blau" |

 green => "gruen";

case pair of

 (1,_) => "win" |

 (2,_) => "place" |

 (3,_) => "show" |

 (_,_) => "loser";

case intOption of

 none => 0 |

 some(v) => v;

328CS 538 Spring 2008©

Imperative Features of ML
ML provides references to heap
locations that may be updated.
This is essentially the same as
access to heap objects via
references (Java) or pointers (C
and C++).
The expression
ref val

creates a reference to a heap
location initialized to val. For
example,
 ref 0;
 val it = ref 0 : int ref

The prefix operator ! fetches
the value contained in a heap
location (just as * dereferences
a pointer in C or C++).

329CS 538 Spring 2008©

Thus
 ! (ref 0);
 val it = 0 : int

The expression
ref := val

updates the heap location
referenced by ref to contain
val. The unit value, (), is
returned.
Hence
val x = ref 0;
val x = ref 0 : int ref

!x;
val it = 0 : int

x:=1;
val it = () : unit

!x;
val it = 1 : int

