
328CS 538 Spring 2008©

Imperative Features of ML
ML provides references to heap
locations that may be updated.
This is essentially the same as
access to heap objects via
references (Java) or pointers (C
and C++).
The expression
ref val

creates a reference to a heap
location initialized to val. For
example,
 ref 0;
 val it = ref 0 : int ref

The prefix operator ! fetches
the value contained in a heap
location (just as * dereferences
a pointer in C or C++).

329CS 538 Spring 2008©

Thus
 ! (ref 0);
 val it = 0 : int

The expression
ref := val

updates the heap location
referenced by ref to contain
val. The unit value, (), is
returned.
Hence
val x = ref 0;
val x = ref 0 : int ref

!x;
val it = 0 : int

x:=1;
val it = () : unit

!x;
val it = 1 : int

330CS 538 Spring 2008©

 Sequential Composition
Expressions or statements are
sequenced using “;”. Hence
val a = (1+2;3+4);
val a = 7 : int

(x:=1;!x);
val it = 1 : int

Iteration
while expr1 do expr2

implements iteration (and
returns unit); Thus
(while false do 10);
val it = () : unit

while !x > 0 do x:= !x-1;
val it = () : unit

!x;
val it = 0 : int

331CS 538 Spring 2008©

Simple I/O
The function
 print;

 val it = fn : string -> unit

prints a string onto standard
output.
For example,
print("Hello World\n");

 Hello World

The conversion routines
 Real.toString;
 val it = fn : real -> string

 Int.toString;
 val it = fn : int -> string

 Bool.toString;
 val it = fn : bool -> string

332CS 538 Spring 2008©

convert a value (real, int or
bool) into a string. Unlike Java,
the call must be explicit.
For example,
print(Int.toString(123));
123

Also available are
Real.fromString;
val it = fn : string -> real
option

Int.fromString;
val it = fn : string -> int
option

Bool.fromString;
val it = fn : string -> bool
option

which convert from a string to
a real or int or bool if possible.
(That’s why the option type is
used).

333CS 538 Spring 2008©

For example,
case (Int.fromString("123"))
 of

 SOME(i) => i | NONE => 0;
val it = 123 : int

case (Int.fromString(
 "One two three")) of

 SOME(i) => i | NONE => 0;
val it = 0 : int

334CS 538 Spring 2008©

Text I/O
The structure TextIO contains a
wide variety of I/O types,
values and functions. You load
these by entering:
open TextIO;

Among the values loaded are
• type instream

This is the type that represents
input text files.

• type outstream
This is the type that represents
output text files.

• type vector = string
Makes vector a synonym for
string.

• type elem = char
Makes elem a synonym for char.

335CS 538 Spring 2008©

• val stdIn : instream
val stdOut : outstream
val stdErr : outstream
Predefined input & output streams.

• val openIn :
 string -> instream
val openOut :
 string -> outstream
Open an input or output stream.
For example,
val out =
 openOut("/tmp/test1");
val out = - : outstream

• val input :
 instream -> vector
Read a line of input into a string
(vector is defined as equivalent to
string). For example (user input is
in red):
val s = input(stdIn);
Hello!
 val s = "Hello!\n" : vector

336CS 538 Spring 2008©

• val inputN :
 instream * int -> vector
Read the next N input characters
into a string. For example,
val t = inputN(stdIn,3);
abcde
val t = "abc" : vector

• val inputAll :
 instream -> vector
Read the rest of the input file into a
string (with newlines separating
lines). For example,
val u = inputAll(stdIn);
 Four score and
 seven years ago ...
 val u = "Four score and\nseven
 years ago ...\n" : vector

• val endOfStream :
 instream -> bool
Are we at the end of this input
stream?

337CS 538 Spring 2008©

• val output :
 outstream * vector -> unit
Output a string on the specified
output stream. For example,
output(stdOut,
 "That’s all folks!\n");
That’s all folks!

338CS 538 Spring 2008©

String Operations
ML provides a wide variety of
string manipulation routines.
Included are:
• The string concatenation operator,

^ "abc" ^ "def" = "abcdef"

• The standard 6 relational
operators:
 < > <= >= = <>

• The string size operator:
val size : string -> int
size ("abcd");
val it = 4 : int

• The string subscripting operator
(indexing from 0):
val sub =
 fn : string * int -> char
sub("abcde",2);
val it = #"c" : char

339CS 538 Spring 2008©

• The substring function
val substring :
string * int * int -> string
This function is called as
substring(string,start,len)
start is the starting position,
counting from 0.
len is the length of the desired
substring. For example,
substring("abcdefghij",3,4)
val it = "defg" : string

• Concatenation of a list of strings
into a single string:
concat :
 string list -> string
For example,
concat ["What’s"," up","?"];
val it = "What’s up?" : string

340CS 538 Spring 2008©

• Convert a character into a string:
str : char -> string
For example,
 str(#"x");
val it = "x" : string

• “Explode” a string into a list of
characters:
explode : string -> char list
For example,
explode("abcde");
val it =
[#"a",#"b",#"c",#"d",#"e"] :
char list

• “Implode” a list of characters into a
string.
implode : char list -> string
For example,
implode
[#"a",#"b",#"c",#"d",#"e"];
val it = "abcde" : string

341CS 538 Spring 2008©

Structures and Signatures
In C++ and Java you can group
variable and function
definitions into classes. In Java
you can also group classes into
packages.
In ML you can group value,
exception and function
definitions into structures.
You can then import selected
definitions from the structure
(using the notation
structure.name) or you can open
the structure, thereby
importing all the definitions
within the structure.
(Examples used in this section
may be found at
~cs538-1/public/sml/struct.sml)

342CS 538 Spring 2008©

The general form of a structure
definition is
structure name =
struct

 val, exception and
 fun definitions

end

For example,
structure Mapping =
struct
 exception NotFound;
 val create = [];
 fun lookup(key,[]) =
 raise NotFound
 | lookup(key,
 (key1,value1)::rest) =
 if key = key1
 then value1
 else lookup(key,rest);

343CS 538 Spring 2008©

 fun insert(key,value,[]) =
 [(key,value)]
 | insert(key,value,
 (key1,value1)::rest) =
 if key = key1
 then (key,value)::rest
 else (key1,value1)::
 insert(key,value,rest);
end;

We can access members of this
structure as Mapping.name. Thus
Mapping.insert(538,"languages",[]);

val it = [(538,"languages")] :
(int * string) list

open Mapping;
exception NotFound

val create : 'a list

val insert : ''a * 'b * (''a * 'b)
 list -> (''a * 'b) list

val lookup : ''a * (''a * 'b)
list -> 'b

344CS 538 Spring 2008©

Signatures
Each structure has a signature,
which is it type.
For example, Mapping’s
signature is
structure Mapping :

 sig

 exception NotFound

 val create : 'a list

 val insert : ''a * 'b *
 (''a * 'b) list ->
 (''a * 'b) list

 val lookup : ''a *
 (''a * 'b) list -> 'b

 end

345CS 538 Spring 2008©

You can define a signature as
signature name = sig

 type definitions for values,
 functions and exceptions

end

For example,
signature Str2IntMapping =
sig
 exception NotFound;
 val lookup:

string * (string*int) list
 -> int;

end;

346CS 538 Spring 2008©

Signatures can be used to
• Restrict the type of a value or

function in a structure.

• Hide selected definitions that
appear in a structure

For example
structure Str2IntMap :

Str2IntMapping = Mapping;

defines a new structure,
Str2IntMap, created by
restricting Mapping to the
Str2IntMapping signature. When
we do this we get

347CS 538 Spring 2008©

open Str2IntMap;
 exception NotFound

 val lookup : string *
 (string * int) list -> int

Only lookup and NotFound are
created, and lookup is limited to
keys that are strings.

348CS 538 Spring 2008©

Extending ML’s Polymorphism
In languages like C++ and Java
we must use types like void* or
Object to simulate the
polymorphism that ML
provides. In ML whenever
possible a general type (a
polytype) is used rather than a
fixed type. Thus in
fun len([]) = 0
 | len(a::b) = 1 + len(b);

we get a type of
 'a list -> int

because this is the most
general type possible that is
consistent with len’s definition.
Is this form of polymorphism
general enough to capture the

349CS 538 Spring 2008©

general idea of making
program definitions as type-
independent as possible?
It isn’t, and to see why consider
the following ML definition of a
merge sort. A merge sort
operates by first splitting a list
into two equal length sublists.
The following function does
this:
fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split(rest) in
 (a::left, b::right)
 end;

350CS 538 Spring 2008©

After the input list is split into
two halves, each half is
recursively sorted, then the
sorted halves are merged
together into a single list.
The following ML function
merges two sorted lists into
one:

fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if hd <= h
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

351CS 538 Spring 2008©

With these two subroutines, a
definition of a sort is easy:
fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),

sort(right))
 end;

352CS 538 Spring 2008©

This definition looks very
general—it should work for a
list of any type.
Unfortunately, when ML types
the functions we get a surprise:
val split = fn : 'a list ->
 'a list * 'a list
val merge = fn : int list *
 int list -> int list
val sort = fn :
 int list -> int list

split is polymorphic, but merge
and sort are limited to integer
lists!
Where did this restriction come
from?

353CS 538 Spring 2008©

The problem is that we did a
comparison in merge using the
<= operator, and ML typed this
as an integer comparison.
We can make our definition of
sort more general by adding a
comparison function, le(a,b)
as a parameter to merge and
sort. If we curry this parameter
we may be able to hide it from
end users. Our updated
definitions are:
fun merge(le,[],[]) = []
 | merge(le,[],hd::tl) = hd::tl
 | merge(le,hd::tl,[]) = hd::tl
 | merge(le,hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(le,tl,h::t)
 else h::merge(le,hd::tl,t)

354CS 538 Spring 2008©

fun sort le [] = []
 | sort le [a] = [a]
 | sort le (a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(le, sort le left,

sort le right)
 end;

Now the types of merge and
sort are:
val merge = fn :
 ('a * 'a -> bool) *
 'a list * 'a list -> 'a list
val sort = fn : ('a * 'a -> bool)
 -> 'a list -> 'a list

We can now “customize” sort
by choosing a particular
definition for the le parameter:
fun le(a,b) = a <= b;
val le = fn : int * int -> bool

355CS 538 Spring 2008©

fun intsort L = sort le L;
val intsort =
 fn : int list -> int list
intsort(
 [4,9,0,2,111,~22,8,~123]);
val it = [~123,~22,0,2,4,8,9,111]
: int list

fun strle(a:string,b) =
 a <= b;
val strle =
 fn : string * string -> bool

fun strsort L = sort strle L;
val strsort =
fn : string list -> string list
strsort(
 ["aac","aaa","ABC","123"]);
val it =
["123","ABC","aaa","aac"] :
string list

