
338CS 538 Spring 2008©

String Operations
ML provides a wide variety of
string manipulation routines.
Included are:
• The string concatenation operator,

^ "abc" ^ "def" = "abcdef"

• The standard 6 relational
operators:
 < > <= >= = <>

• The string size operator:
val size : string -> int
size ("abcd");
val it = 4 : int

• The string subscripting operator
(indexing from 0):
val sub =
 fn : string * int -> char
sub("abcde",2);
val it = #"c" : char

339CS 538 Spring 2008©

• The substring function
val substring :
string * int * int -> string
This function is called as
substring(string,start,len)
start is the starting position,
counting from 0.
len is the length of the desired
substring. For example,
substring("abcdefghij",3,4)
val it = "defg" : string

• Concatenation of a list of strings
into a single string:
concat :
 string list -> string
For example,
concat ["What’s"," up","?"];
val it = "What’s up?" : string

340CS 538 Spring 2008©

• Convert a character into a string:
str : char -> string
For example,
 str(#"x");
val it = "x" : string

• “Explode” a string into a list of
characters:
explode : string -> char list
For example,
explode("abcde");
val it =
[#"a",#"b",#"c",#"d",#"e"] :
char list

• “Implode” a list of characters into a
string.
implode : char list -> string
For example,
implode
[#"a",#"b",#"c",#"d",#"e"];
val it = "abcde" : string

341CS 538 Spring 2008©

Structures and Signatures
In C++ and Java you can group
variable and function
definitions into classes. In Java
you can also group classes into
packages.
In ML you can group value,
exception and function
definitions into structures.
You can then import selected
definitions from the structure
(using the notation
structure.name) or you can open
the structure, thereby
importing all the definitions
within the structure.
(Examples used in this section
may be found at
~cs538-1/public/sml/struct.sml)

342CS 538 Spring 2008©

The general form of a structure
definition is
structure name =
struct

 val, exception and
 fun definitions

end

For example,
structure Mapping =
struct
 exception NotFound;
 val create = [];
 fun lookup(key,[]) =
 raise NotFound
 | lookup(key,
 (key1,value1)::rest) =
 if key = key1
 then value1
 else lookup(key,rest);

343CS 538 Spring 2008©

 fun insert(key,value,[]) =
 [(key,value)]
 | insert(key,value,
 (key1,value1)::rest) =
 if key = key1
 then (key,value)::rest
 else (key1,value1)::
 insert(key,value,rest);
end;

We can access members of this
structure as Mapping.name. Thus
Mapping.insert(538,"languages",[]);

val it = [(538,"languages")] :
(int * string) list

open Mapping;
exception NotFound

val create : 'a list

val insert : ''a * 'b * (''a * 'b)
 list -> (''a * 'b) list

val lookup : ''a * (''a * 'b)
list -> 'b

344CS 538 Spring 2008©

Signatures
Each structure has a signature,
which is it type.
For example, Mapping’s
signature is
structure Mapping :

 sig

 exception NotFound

 val create : 'a list

 val insert : ''a * 'b *
 (''a * 'b) list ->
 (''a * 'b) list

 val lookup : ''a *
 (''a * 'b) list -> 'b

 end

345CS 538 Spring 2008©

You can define a signature as
signature name = sig

 type definitions for values,
 functions and exceptions

end

For example,
signature Str2IntMapping =
sig
 exception NotFound;
 val lookup:

string * (string*int) list
 -> int;

end;

346CS 538 Spring 2008©

Signatures can be used to
• Restrict the type of a value or

function in a structure.

• Hide selected definitions that
appear in a structure

For example
structure Str2IntMap :

Str2IntMapping = Mapping;

defines a new structure,
Str2IntMap, created by
restricting Mapping to the
Str2IntMapping signature. When
we do this we get

347CS 538 Spring 2008©

open Str2IntMap;
 exception NotFound

 val lookup : string *
 (string * int) list -> int

Only lookup and NotFound are
created, and lookup is limited to
keys that are strings.

348CS 538 Spring 2008©

Extending ML’s Polymorphism
In languages like C++ and Java
we must use types like void* or
Object to simulate the
polymorphism that ML
provides. In ML whenever
possible a general type (a
polytype) is used rather than a
fixed type. Thus in
fun len([]) = 0
 | len(a::b) = 1 + len(b);

we get a type of
 'a list -> int

because this is the most
general type possible that is
consistent with len’s definition.
Is this form of polymorphism
general enough to capture the

349CS 538 Spring 2008©

general idea of making
program definitions as type-
independent as possible?
It isn’t, and to see why consider
the following ML definition of a
merge sort. A merge sort
operates by first splitting a list
into two equal length sublists.
The following function does
this:
fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split(rest) in
 (a::left, b::right)
 end;

350CS 538 Spring 2008©

After the input list is split into
two halves, each half is
recursively sorted, then the
sorted halves are merged
together into a single list.
The following ML function
merges two sorted lists into
one:

fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if hd <= h
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

351CS 538 Spring 2008©

With these two subroutines, a
definition of a sort is easy:
fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),

sort(right))
 end;

352CS 538 Spring 2008©

This definition looks very
general—it should work for a
list of any type.
Unfortunately, when ML types
the functions we get a surprise:
val split = fn : 'a list ->
 'a list * 'a list
val merge = fn : int list *
 int list -> int list
val sort = fn :
 int list -> int list

split is polymorphic, but merge
and sort are limited to integer
lists!
Where did this restriction come
from?

353CS 538 Spring 2008©

The problem is that we did a
comparison in merge using the
<= operator, and ML typed this
as an integer comparison.
We can make our definition of
sort more general by adding a
comparison function, le(a,b)
as a parameter to merge and
sort. If we curry this parameter
we may be able to hide it from
end users. Our updated
definitions are:
fun merge(le,[],[]) = []
 | merge(le,[],hd::tl) = hd::tl
 | merge(le,hd::tl,[]) = hd::tl
 | merge(le,hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(le,tl,h::t)
 else h::merge(le,hd::tl,t)

354CS 538 Spring 2008©

fun sort le [] = []
 | sort le [a] = [a]
 | sort le (a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(le, sort le left,

sort le right)
 end;

Now the types of merge and
sort are:
val merge = fn :
 ('a * 'a -> bool) *
 'a list * 'a list -> 'a list
val sort = fn : ('a * 'a -> bool)
 -> 'a list -> 'a list

We can now “customize” sort
by choosing a particular
definition for the le parameter:
fun le(a,b) = a <= b;
val le = fn : int * int -> bool

355CS 538 Spring 2008©

fun intsort L = sort le L;
val intsort =
 fn : int list -> int list
intsort(
 [4,9,0,2,111,~22,8,~123]);
val it = [~123,~22,0,2,4,8,9,111]
: int list

fun strle(a:string,b) =
 a <= b;
val strle =
 fn : string * string -> bool

fun strsort L = sort strle L;
val strsort =
fn : string list -> string list
strsort(
 ["aac","aaa","ABC","123"]);
val it =
["123","ABC","aaa","aac"] :
string list

356CS 538 Spring 2008©

Making the comparison relation
an explicit parameter works,
but it is a bit ugly and
inefficient. Moreover, if we have
several functions that depend
on the comparison relation, we
need to ensure that they all use
the same relation. Thus if we
wish to define a predicate
inOrder that tests if a list is
already sorted, we can use:
fun inOrder le [] = true
 | inOrder le [a] = true
 | inOrder le (a::b::rest) =
 le(a,b) andalso
 inOrder le (b::rest);
val inOrder = fn :
 ('a * 'a -> bool) -> 'a list -> bool

Now sort and inOrder need to
use the same definition of le.
But how can we enforce this?

357CS 538 Spring 2008©

The structure mechanism we
studied earlier can help. We can
put a single definition of le in
the structure, and share it:
structure Sorting =
struct
 fun le(a,b) = a <= b;

 fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split rest in

(a::left,b::right)
 end;
 fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

358CS 538 Spring 2008©

fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),
 sort(right))
 end;
 fun inOrder [] = true
 | inOrder [a] = true
 | inOrder (a::b::rest) =
 le(a,b) andalso
 inOrder (b::rest);
end;
structure Sorting :
 sig
 val inOrder : int list -> bool
 val le : int * int -> bool
 val merge : int list *
 int list -> int list
 val sort :
 int list -> int list
 val split : 'a list ->
 'a list * 'a list
 end

359CS 538 Spring 2008©

To sort a type other than
integers, we replace the
definition of le in the structure.
But rather than actually edit
that definition, ML gives us a
powerful mechanism to
parameterize a structure. This
is the functor, which allows us
to use one or more structures
as parameters in the definition
of a structure.

360CS 538 Spring 2008©

Functors
The general form of a functor is
functor name
 (structName:signature) =
 structure definition;

This functor will create a
specific version of the structure
definition using the structure
parameter passed to it.
For our purposes this is ideal—
we pass in a structure defining
an ordering relation (the le
function). This then creates a
custom version of all the
functions defined in the
structure body, using the
specific le definition provided.

361CS 538 Spring 2008©

We first define
signature Order =

sig

 type elem

 val le : elem*elem -> bool

end;

This defines the type of a
structure that defines a le
predicate defined on a pair of
types called elem.
An example of such a structure
is
structure IntOrder:Order =

struct

 type elem = int;

 fun le(a,b) = a <= b;

end;

362CS 538 Spring 2008©

Now we just define a functor
that creates a Sorting structure
based on an Order structure:
functor MakeSorting(O:Order) =
struct
open O; (* makes le available*)

 fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split rest in
 (a::left,b::right)
 end;

 fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

363CS 538 Spring 2008©

 fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),

sort(right))
 end;

 fun inOrder [] = true
 | inOrder [a] = true
 | inOrder (a::b::rest) =
 le(a,b) andalso
 inOrder (b::rest);
end;

364CS 538 Spring 2008©

Now
structure IntSorting =
 MakeSorting(IntOrder);

creates a custom structure for
sorting integers:
 IntSorting.sort [3,0,~22,8];
val it = [~22,0,3,8] : elem list

To sort strings, we just define a
structure containing an le
defined for strings with Order
as its signature (i.e., type) and
pass it to MakeSorting:
structure StrOrder:Order =

struct

 type elem = string

 fun le(a:string,b) = a <= b;

end;

365CS 538 Spring 2008©

structure StrSorting =
 MakeSorting(StrOrder);

StrSorting.sort(
 ["cc","abc","xyz"]);
val it = ["abc","cc","xyz"] :
 StrOrder.elem list

StrSorting.inOrder(
 ["cc","abc","xyz"]);
val it = false : bool

StrSorting.inOrder(
 [3,0,~22,8]);
stdIn:593.1-593.32 Error:
operator and operand don’t agree
[literal]
operator domain: strOrder.elem

list
 operand: int list
 in expression:

StrSorting.inOrder (3 :: 0 ::
~22 :: <exp> :: <exp>)

