
360CS 538 Spring 2008©

Functors
The general form of a functor is
functor name
 (structName:signature) =
 structure definition;

This functor will create a
specific version of the structure
definition using the structure
parameter passed to it.
For our purposes this is ideal—
we pass in a structure defining
an ordering relation (the le
function). This then creates a
custom version of all the
functions defined in the
structure body, using the
specific le definition provided.

361CS 538 Spring 2008©

We first define
signature Order =

sig

 type elem

 val le : elem*elem -> bool

end;

This defines the type of a
structure that defines a le
predicate defined on a pair of
types called elem.
An example of such a structure
is
structure IntOrder:Order =

struct

 type elem = int;

 fun le(a,b) = a <= b;

end;

362CS 538 Spring 2008©

Now we just define a functor
that creates a Sorting structure
based on an Order structure:
functor MakeSorting(O:Order) =
struct
open O; (* makes le available*)

 fun split [] = ([],[])
 | split [a] = ([a],[])
 | split (a::b::rest) =
 let val (left,right) =
 split rest in
 (a::left,b::right)
 end;

 fun merge([],[]) = []
 | merge([],hd::tl) = hd::tl
 | merge(hd::tl,[]) = hd::tl
 | merge(hd::tl,h::t) =
 if le(hd,h)
 then hd::merge(tl,h::t)
 else h::merge(hd::tl,t)

363CS 538 Spring 2008©

 fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) =
 split(a::b::rest) in
 merge(sort(left),

sort(right))
 end;

 fun inOrder [] = true
 | inOrder [a] = true
 | inOrder (a::b::rest) =
 le(a,b) andalso
 inOrder (b::rest);
end;

364CS 538 Spring 2008©

Now
structure IntSorting =
 MakeSorting(IntOrder);

creates a custom structure for
sorting integers:
 IntSorting.sort [3,0,~22,8];
val it = [~22,0,3,8] : elem list

To sort strings, we just define a
structure containing an le
defined for strings with Order
as its signature (i.e., type) and
pass it to MakeSorting:
structure StrOrder:Order =

struct

 type elem = string

 fun le(a:string,b) = a <= b;

end;

365CS 538 Spring 2008©

structure StrSorting =
 MakeSorting(StrOrder);

StrSorting.sort(
 ["cc","abc","xyz"]);
val it = ["abc","cc","xyz"] :
 StrOrder.elem list

StrSorting.inOrder(
 ["cc","abc","xyz"]);
val it = false : bool

StrSorting.inOrder(
 [3,0,~22,8]);
stdIn:593.1-593.32 Error:
operator and operand don’t agree
[literal]
operator domain: strOrder.elem

list
 operand: int list
 in expression:

StrSorting.inOrder (3 :: 0 ::
~22 :: <exp> :: <exp>)

366CS 538 Spring 2008©

The SML Basis Library
SML provides a wide variety of
useful types and functions,
grouped into structures, that
are included in the Basis
Library.
A web page fully documenting
the Basis Library is linked from
the ML page that is part of the
Programming Languages Links
page on the CS 538 home page.
Many useful types, operators
and functions are “preloaded”
when you start the SML
compiler. These are listed in the
“Top-level Environment” section
of the Basis Library
documentation.

367CS 538 Spring 2008©

Many other useful definitions
must be explicitly fetched from
the structures they are defined
in.
For example, the Math structure
contains a number of useful
mathematical values and
operations.
You may simply enter
open Math;

while will load all the
definitions in Math. Doing this
may load more definitions than
you want. What’s worse, a
definition loaded may redefine
a definition you currently want
to stay active. (Recall that ML
has virtually no overloading, so
functions with the same name

368CS 538 Spring 2008©

in different structures are
common.)
A more selective way to access
a definition is to qualify it with
the structure’s name. Hence
Math.pi;
val it = 3.14159265359 : real

gets the value of pi defined in
Math.
Should you tire of repeatedly
qualifying a name, you can (of
course) define a local value to
hold its value. Thus
val pi = Math.pi;
val pi = 3.14159265359 : real

works fine.

369CS 538 Spring 2008©

An Overview of Structures in
the Basis Library

The Basis Library contains a
wide variety of useful
structures. Here is an overview
of some of the most important
ones.
• Option

Operations for the option type.
• Bool

Operations for the bool type.
• Char

Operations for the char type.
• String

Operations for the string type.
• Byte

Operations for the byte type.

370CS 538 Spring 2008©

• Int

Operations for the int type.
• IntInf

Operations for an unbounded
precision integer type.

• Real

Operations for the real type.
• Math

Various mathematical values and
operations.

• List

Operations for the list type.
• ListPair

Operations on pairs of lists.
• Vector

A polymorphic type for
immutable (unchangeable)
sequences.

371CS 538 Spring 2008©

• IntVector, RealVector,
BoolVector, CharVector

Monomorphic types for
immutable sequences.

• Array

A polymorphic type for mutable
(changeable) sequences.

• IntArray, RealArray,
BoolArray, CharArray

Monomorphic types for mutable
sequences.

• Array2

A polymorphic 2 dimensional
mutable type.

• IntArray2, RealArray2,
BoolArray2, CharArray2

Monomorphic 2 dimensional
mutable types.

• TextIO

Character-oriented text IO.

372CS 538 Spring 2008©

• BinIO

Binary IO operations.
• OS, Unix, Date, Time, Timer

Operating systems types and
operations.

373CS 538 Spring 2008©

ML Type Inference
One of the most novel aspects of
ML is the fact that it infers types
for all user declarations.
How does this type inference
mechanism work?
Essentially, the ML compiler
creates an unknown type for each
declaration the user makes. It
then solves for these unknowns
using known types and a set of
type inference rules. That is, for a
user-defined identifier i, ML wants
to determine T(i), the type of i.

374CS 538 Spring 2008©

The type inference rules are:
1. The types of all predefined
literals, constants and functions
are known in advance. They may
be looked-up and used. For
example,
2 : int

true : bool

[] : 'a list

:: : 'a * 'a list -> 'a list

2. All occurrences of the same
symbol (using scoping rules) have
the same type.

3. In the expression
I = J

 we know T(I) = T(J).

375CS 538 Spring 2008©

4. In a conditional
(if E1 then E2 else E3)

 we know that
T(E1) = bool,
T(E2) = T(E3) = T(conditional)

5. In a function call
(f x)

 we know that if T(f) = 'a -> 'b
 then T(x) = 'a and T(f x) = 'b

6. In a function definition
fun f x = expr;

 if t(x) = 'a and T(expr) = 'b
 then T(f) = 'a -> 'b

7. In a tuple (e1,e2, ..., en)

 if we know that
 T(ei) = 'ai 1 ≤ i ≤ n

 then T(e1,e2, ..., en) =
 'a1*'a2*...*'an

376CS 538 Spring 2008©

8. In a record
 { a=e1,b=e2, ... }

 if T(ei) = 'ai 1 ≤ i ≤ n then
 the type of the record =

{a:'a1, b:'a2, ...}

9. In a list [v1,v2, ... vn]

 if we know that
 T(vi) = 'ai 1 ≤ i ≤ n

 then we know that
'a1='a2=...='an and
T([v1,v2, ... vn]) = 'a1 list

377CS 538 Spring 2008©

To Solve for Types:
1. Assign each untyped symbol its

own distinct type variable.
2.Use rules (1) to (9) to solve for and

simplify unknown types.
3. Verify that each solution “works”

(causes no type errors)
throughout the program.

Examples
Consider
fun fact(n)=
if n=1 then 1 else n*fact(n-1);

To begin, we’ll assign type
variables:
T(fact) = 'a -> 'b
(fact is a function)
T(n) = 'c

378CS 538 Spring 2008©

Now we begin to solve for the
types 'a, 'b and 'c must
represent.
We know (rule 5) that 'c = 'a
since n is the argument of fact.
We know (rule 3) that 'c = T(1)
= int since n=1 is part of the
definition.
We know (rule 4) that T(1) =
T(if expression)='b since the if
expression is the body of fact.
Thus, we have
‘a = 'b ='c = int, so
T(fact) = int -> int

T(n) = int

These types are correct for all
occurrences of fact and n in the
definition.

379CS 538 Spring 2008©

A Polymorphic Function:
fun leng(L) =

 if L = []

 then 0

 else 1+len(tl L);

To begin, we know that
T([]) = 'a list and
T(tl) = 'b list -> 'b list

We assign types to leng and L:
T(leng) = 'c -> 'd

T(L) = 'e

Since L is the argument of leng,
'e = 'c

From the expression L=[] we
know
'e = 'a list

380CS 538 Spring 2008©

From the fact that 0 is the result
of the then, we know the if
returns an int, so 'd = int.
Thus T(leng) = 'a list -> int
and
T(L) = 'a list

These solutions are type
correct throughout the
definition.

381CS 538 Spring 2008©

Type Inference for Patterns
Type inference works for
patterns too.
Consider
fun leng [] = 0

 | leng (a::b) = 1 + leng b;

We first create type variables:
T(leng) = 'a -> 'b

T(a) = 'c

T(b) = 'd

From leng [] we conclude that
'a = 'e list

From leng [] = 0 we conclude
that
'b = int

From leng (a::b) we conclude
that

382CS 538 Spring 2008©

'c ='e and 'd = 'e list

Thus we have
T(leng) = 'e list -> int

T(a) = 'e

T(b) = 'e list

This solution is type correct
throughout the definition.

383CS 538 Spring 2008©

Not Everything can be
Automatically Typed in ML

Let’s try to type
fun f x = (x x);

We assume
T(f) = 'a -> 'b

t(x) = 'c

Now (as usual) 'a = 'c since x is
the argument of f.
From the call (x x) we conclude
that 'c must be of the form 'd ->
'e (since x is being used as a
function).
Moreover, 'c = 'd since x is an
argument in (x x).
Thus 'c = 'd ->'e = 'c ->'e.
But 'c = 'c->'e has no solution,
so in ML this definition is invalid.
We can’t pass a function to itself

384CS 538 Spring 2008©

as an argument—the type system
doesn’t allow it.
In Scheme this is allowed:
(define (f x) (x x))

but a call like
(f f)

certainly doesn’t do anything
good!

385CS 538 Spring 2008©

Type Unions
Let’s try to type
fun f g = ((g 3), (g true));

Now the type of g is 'a -> 'b
since g is used as a function.
The call (g 3) says 'a = int and
the call (g true) says 'a =
boolean.
Does this mean g is polymorphic?
That is, is the type of f
f : ('a->'b)->'b*'b?
NO!
All functions have the type 'a ->
'b but not all functions can be
passed to f.
Consider not: bool->bool.
The call (not 3) is certainly
illegal.

386CS 538 Spring 2008©

What we’d like in this case is a
union type. That is, we’d like to be
able to type g as (int|bool)-
>'b which ML doesn’t allow.
Fortunately, ML does allow type
constructors, which are just what
we need.
Given
datatype T =
 I of int|B of bool;

we can redefine f as
fun f g =
 (g (I(3)), g (B(true)));
val f = fn : (T -> 'a) -> 'a * 'a

387CS 538 Spring 2008©

Finally, note that in a definition
like
let
 val f =

fn x => x (* id function*)
in (f 3,f true)
end;

type inference works fine:
val it = (3,true) : int * bool

Here we define f in advance, so
its type is known when calls to
it are seen.

