Functors

The general form of a functor is

```ml
functor name
(structName:signature) =
structure definition;
```

This functor will create a specific version of the structure definition using the structure parameter passed to it. For our purposes this is ideal—we pass in a structure defining an ordering relation (the \(\text{le} \) function). This then creates a custom version of all the functions defined in the structure body, using the specific \(\text{le} \) definition provided.

We first define

```ml
signature Order =
sig
  type elem
  val le : elem*elem -> bool
end;
```

This defines the type of a structure that defines a \(\text{le} \) predicate defined on a pair of types called \(\text{elem} \).

An example of such a structure is

```ml
structure IntOrder:Order =
struct
  type elem = int;
  fun le(a,b) = a <= b;
end;
```

Now we just define a functor that creates a `Sorting` structure based on an `Order` structure:

```ml
functor MakeSorting(O:Order) =
struct
  open O; (* makes le available*)
  fun split [] = ([],[])
    | split [a] = ([a],[])
    | split (a::b::rest) =
        let val (left,right) = split rest
        in
            (a::left,b::right)
        end;

  fun merge([],[]) = []
    | merge([],hd::tl) = hd::tl
    | merge(hd::tl,[]) = hd::tl
    | merge(hd::tl,h::t) =
        if le(hd,h)
        then hd::merge(tl,h::t)
        else h::merge(hd::tl,t)
end;
```

```ml
fun sort [] = []
    | sort([a]) = [a]
    | sort(a::b::rest) =
        let val (left,right) = split(a::b::rest)
        in
            merge(sort(left),
                 sort(right))
        end;
```

```ml
fun inOrder [] = true
    | inOrder [a] = true
    | inOrder (a::b::rest) =
        le(a,b) andalso
        inOrder (b::rest);
```

Now
structure IntSorting =
 MakeSorting(IntOrder);
creates a custom structure for
sorting integers:
 IntSorting.sort [3,0,-22,8];
 val it = [-22,0,3,8] : elem list
To sort strings, we just define a
structure containing an le
defined for strings with order
as its signature (i.e., type) and
pass it to MakeSorting:
structure StrOrder:Order =
 struct
 type elem = string
 fun le(a:string,b) = a <= b;
 end;
structure StrSorting =
 MakeSorting(StrOrder);
StrSorting.sort ("cc","abc","xyz");
 val it = ["abc","cc","xyz"] : StrOrder.elem list
StrSorting.inOrder ("cc","abc","xyz");
 val it = false : bool
StrSorting.inOrder (3,0,-22,8);
 stdIn:593.1-593.32 Error:
 operator and operand don't agree
 [literal]
 operator domain: strOrder.elem
 operand: int list
 in expression:
 StrSorting.inOrder (3 :: 0 :: ~22 :: <exp> :: <exp>)

The SML Basis Library
SML provides a wide variety of
useful types and functions,
grouped into structures, that
are included in the Basis
Library.
A web page fully documenting
the Basis Library is linked from
the ML page that is part of the
Programming Languages Links
page on the CS 538 home page.
Many useful types, operators
and functions are “preloaded”
when you start the SML
compiler. These are listed in the
“Top-level Environment” section
of the Basis Library
documentation.

Many other useful definitions
must be explicitly fetched from
the structures they are defined
in.
For example, the Math structure
contains a number of useful
mathematical values and
operations.
You may simply enter
open Math;
while will load all the
definitions in Math. Doing this
may load more definitions than
you want. What’s worse, a
definition loaded may redefine
a definition you currently want
to stay active. (Recall that ML
has virtually no overloading, so
functions with the same name
An Overview of Structures in the Basis Library

The Basis Library contains a wide variety of useful structures. Here is an overview of some of the most important ones.

- **Option**
 Operations for the `option` type.
- **Bool**
 Operations for the `bool` type.
- **Char**
 Operations for the `char` type.
- **String**
 Operations for the `string` type.
- **Byte**
 Operations for the `byte` type.
- **Int**
 Operations for the `int` type.
- **IntInf**
 Operations for an unbounded precision integer type.
- **Real**
 Operations for the `real` type.
- **Math**
 Various mathematical values and operations.
- **List**
 Operations for the `list` type.
- **ListPair**
 Operations on pairs of lists.
- **Vector**
 A polymorphic type for immutable (unchangeable) sequences.
- **IntVector, RealVector, BoolVector, CharVector**
 Monomorphic types for immutable sequences.
- **Array**
 A polymorphic type for mutable (changeable) sequences.
- **IntArray, RealArray, BoolArray, CharArray**
 Monomorphic types for mutable sequences.
- **Array2**
 A polymorphic 2 dimensional mutable type.
- **IntArray2, RealArray2, BoolArray2, CharArray2**
 Monomorphic 2 dimensional mutable types.
- **TextIO**
 Character-oriented text IO.
ML Type Inference

One of the most novel aspects of ML is the fact that it infers types for all user declarations.

How does this type inference mechanism work?

Essentially, the ML compiler creates an unknown type for each declaration the user makes. It then solves for these unknowns using known types and a set of type inference rules. That is, for a user-defined identifier i, ML wants to determine $T(i)$, the type of i.

The type inference rules are:

1. The types of all predefined literals, constants and functions are known in advance. They may be looked-up and used. For example,

   ```
   2 : int
   true : bool
   [] : 'a list
   :: : 'a * 'a list -> 'a list
   ```

2. All occurrences of the same symbol (using scoping rules) have the same type.

3. In the expression

   ```
   I = J
   ```

 we know $T(I) = T(J)$.

4. In a conditional

   ```
   if E1 then E2 else E3
   ```

 we know that

   ```
   T(E1) = bool,
   T(E2) = T(E3) = T(conditional)
   ```

5. In a function call

   ```
   (f x)
   ```

 we know that if $T(f) = 'a -> 'b$
 then $T(x) = 'a$ and $T(f x) = 'b$

6. In a function definition

   ```
   fun f x = expr;
   if t(x) = 'a and T(expr) = 'b
   then T(f) = 'a -> 'b
   ```

7. In a tuple $(e_1, e_2, ..., e_n)$

 if we know that

   ```
   T(e_i) = 'a_i 1 \leq i \leq n
   ```

 then $T(e_1, e_2, ..., e_n) = 'a_1*'a_2*...*'a_n$
8. In a record
 \{ a=e_1, b=e_2, \ldots \}
 if \(T(e_i) = 'a_1 \leq i \leq n \) then
 the type of the record =
 \{ a: 'a_1, b: 'a_2, \ldots \}

9. In a list \([v_1, v_2, \ldots v_n]\)
 if we know that
 \(T(v_1) = 'a_1 \leq i \leq n \)
 then we know that
 \('a_1 = 'a_2 = \ldots = 'a_n \) and
 \(T([v_1, v_2, \ldots v_n]) = 'a_1 \text{ list} \)

To Solve for Types:

1. Assign each untyped symbol its own distinct type variable.
2. Use rules (1) to (9) to solve for and simplify unknown types.
3. Verify that each solution “works” (causes no type errors) throughout the program.

Examples

Consider

```plaintext
fun fact(n) =
  if n=1 then 1 else n*fact(n-1);
```

To begin, we'll assign type variables:

\(T(fact) = 'a \rightarrow 'b \)
\(T(n) = 'c \)

Now we begin to solve for the types \('a, 'b \) and \('c \) must represent.

We know (rule 5) that \('c = 'a \) since \(n \) is the argument of \(fact \).

We know (rule 3) that \('c = T(1) = \text{int} \) since \(n=1 \) is part of the definition.

We know (rule 4) that \(T(1) = T(\text{if expression}) = 'b \) since the if expression is the body of \(fact \).

Thus, we have

\('a = 'b = 'c = \text{int} \), so
\(T(fact) = \text{int} \rightarrow \text{int} \)
\(T(n) = \text{int} \)

These types are correct for all occurrences of \(fact \) and \(n \) in the definition.

A Polymorphic Function:

```plaintext
fun leng(L) =
  if L = [] then 0
  else 1+len(tl L);
```

To begin, we know that

\(T([]) = 'a \text{ list} \) and
\(T(tl) = 'b \text{ list} \rightarrow 'b \text{ list} \)

We assign types to \(leng \) and \(L \):

\(T(leng) = 'c \rightarrow 'd \)
\(T(L) = 'e \)

Since \(L \) is the argument of \(leng \),
\('e = 'c \)

From the expression \(L=[] \) we know
\('e = 'a \text{ list} \)
From the fact that 0 is the result of the then, we know the if returns an int, so $d = \text{int}$.
Thus $T(leng) = 'a \text{ list} \rightarrow \text{int}$ and
$T(L) = 'a \text{ list}$
These solutions are type correct throughout the definition.

Type Inference for Patterns

Type inference works for patterns too.
Consider

```ml
fun leng [] = 0
 | leng (a::b) = 1 + leng b;
```

We first create type variables:
$T(leng) = 'a \rightarrow 'b$
$T(a) = 'c$
$T(b) = 'd$
From $leng []$ we conclude that
$'a = 'e \text{ list}$
From $leng [] = 0$ we conclude that
$'b = \text{int}$
From $leng (a::b)$ we conclude that

$'c = 'e$ and $'d = 'e \text{ list}$
Thus we have
$T(leng) = 'e \text{ list} \rightarrow \text{int}$
$T(a) = 'e$
$T(b) = 'e \text{ list}$
This solution is type correct throughout the definition.

Not Everything can be Automatically Typed in ML

Let's try to type

```ml
fun f x = (x x);
```

We assume
$T(f) = 'a \rightarrow 'b$
$t(x) = 'c$
Now (as usual) $'a = 'c$ since x is the argument of f.
From the call $(x x)$ we conclude that $'c$ must be of the form $'d \rightarrow 'e$ (since x is being used as a function).
Moreover, $'c = 'd$ since x is an argument in $(x x)$.
Thus $'c = 'd \rightarrow 'e = 'c \rightarrow 'e$.
But $'c = 'c \rightarrow 'e$ has no solution, so in ML this definition is invalid.
We can't pass a function to itself.
as an argument—the type system doesn't allow it.

In Scheme this is allowed:

```
(define (f x) (x x))
```

but a call like

```
(f f)
```
certainly doesn't do anything good!

Type Unions

Let's try to type

```
fun f g = ((g 3), (g true));
```

Now the type of `g` is `'a -> 'b` since `g` is used as a function.
The call `(g 3)` says `'a = int` and the call `(g true)` says `'a = boolean`.

Does this mean `g` is polymorphic?
That is, is the type of `f`

```
f : ('a->'b)->'b*'b
```

NO!

All functions have the type `'a -> 'b` but not all functions can be passed to `f`.
Consider `not : bool->bool`.
The call `(not 3)` is certainly illegal.

What we'd like in this case is a `union` type. That is, we'd like to be able to type `g` as `(int|bool)-'b` which ML doesn't allow.

Fortunately, ML does allow type constructors, which are just what we need.

Given

```
datatype T =
  I of int|B of bool;
```

we can redefine `f` as

```
fun f g =
  (g (I(3)), g (B(true)));
val f = fn : (T -> 'a) -> 'a * 'a
```

Finally, note that in a definition like

```
let
  val f =
    fn x => x (* id function*)
in (f 3,f true)
end;
```

type inference works fine:

```
val it = (3,true) : int * bool
```

Here we define `f` in advance, so its type is known when calls to it are seen.