Functors

The general form of a functor is

```
functor name
    (structName:signature) =
    structure definition;
```

This functor will create a specific version of the structure definition using the structure parameter passed to it.

For our purposes this is ideal—we pass in a structure defining an ordering relation (the `le` function). This then creates a custom version of all the functions defined in the structure body, using the specific `le` definition provided.
We first define

signatures

signature Order =

sig

 type elem

 val le : elem*elem -> bool

end;

This defines the type of a structure that defines a le predicate defined on a pair of types called elem.

An example of such a structure is

structure IntOrder:Order =

struct

 type elem = int;

 fun le(a,b) = a <= b;

end;
Now we just define a functor that creates a sorting structure based on an order structure:

```ml
functor MakeSorting(O : Order) =
    struct
        open O; (* Makes le available *)
        fun split [] = ([],[])
            | split [a] = ([a],[]) 
            | split (a::b::rest) = 
                let val (left,right) = 
                    split rest in
                    (a::left,b::right)
                end;

        fun merge([],[]) = []
            | merge([],hd::tl) = hd::tl
            | merge(hd::tl,[]) = hd::tl
            | merge(hd::tl,h::t) = 
                if le(hd,h)
                    then hd::merge(tl,h::t)
                    else h::merge(hd::tl,t)
```
fun sort [] = []
 | sort([a]) = [a]
 | sort(a::b::rest) =
 let val (left,right) = split(a::b::rest) in
 merge(sort(left),
 sort(right))
 end;

fun inOrder [] = true
 | inOrder [a] = true
 | inOrder (a::b::rest) =
 le(a,b) andalso
 inOrder (b::rest);
 end;
Now

structure IntSorting =
 MakeSorting(IntOrder);
creates a custom structure for sorting integers:

 IntSorting.sort [3,0,~22,8];
 val it = [~22,0,3,8] : elem list

To sort strings, we just define a structure containing an \(le \)
defined for strings with \(\text{order} \) as its signature (i.e., type) and
pass it to \(\text{MakeSorting} \):

structure StrOrder:Order =
 struct
 type elem = string
 fun le(a:string,b) = a <= b;
 end;
structure StrSorting =
 MakeSorting(StrOrder);

StrSorting.sort(
 ["cc","abc","xyz"]);

val it = ["abc","cc","xyz"] : StrOrder.elem list

StrSorting.inOrder(
 ["cc","abc","xyz"]);

val it = false : bool

StrSorting.inOrder(
 [3,0,~22,8]);

stdin:593.1-593.32 Error:
operator and operand don’t agree
[literal]
 operator domain: strOrder.elem list
 operand: int list
 in expression:
 StrSorting.inOrder (3 :: 0 :: ~22 :: <exp> :: <exp>)}
The SML Basis Library

SML provides a wide variety of useful types and functions, grouped into structures, that are included in the Basis Library.

A web page fully documenting the Basis Library is linked from the ML page that is part of the Programming Languages Links page on the CS 538 home page.

Many useful types, operators and functions are “preloaded” when you start the SML compiler. These are listed in the “Top-level Environment” section of the Basis Library documentation.
Many other useful definitions must be explicitly fetched from the structures they are defined in.

For example, the Math structure contains a number of useful mathematical values and operations.

You may simply enter

```ml
open Math;
```

while will load all the definitions in Math. Doing this may load more definitions than you want. What’s worse, a definition loaded may redefine a definition you currently want to stay active. (Recall that ML has virtually no overloading, so functions with the same name
in different structures are common.)

A more selective way to access a definition is to qualify it with the structure’s name. Hence

```
Math.pi;
val it = 3.14159265359 : real
```

gets the value of \(\pi \) defined in `Math`.

Should you tire of repeatedly qualifying a name, you can (of course) define a local value to hold its value. Thus

```
val pi = Math.pi;
val pi = 3.14159265359 : real
```

works fine.
An Overview of Structures in the Basis Library

The Basis Library contains a wide variety of useful structures. Here is an overview of some of the most important ones.

- **Option**
 Operations for the `option` type.
- **Bool**
 Operations for the `bool` type.
- **Char**
 Operations for the `char` type.
- **String**
 Operations for the `string` type.
- **Byte**
 Operations for the `byte` type.
- **Int**
 Operations for the `int` type.
- **IntInf**
 Operations for an unbounded precision integer type.
- **Real**
 Operations for the `real` type.
- **Math**
 Various mathematical values and operations.
- **List**
 Operations for the `list` type.
- **ListPair**
 Operations on pairs of lists.
- **Vector**
 A polymorphic type for immutable (unchangeable) sequences.
• IntVector, RealVector,
 BoolVector, CharVector
 Monomorphic types for
 immutable sequences.

• Array
 A polymorphic type for mutable
 (changeable) sequences.

• IntArray, RealArray,
 BoolArray, CharArray
 Monomorphic types for mutable
 sequences.

• Array2
 A polymorphic 2 dimensional
 mutable type.

• IntArray2, RealArray2,
 BoolArray2, CharArray2
 Monomorphic 2 dimensional
 mutable types.

• TextIO
 Character-oriented text IO.
• **BinIO**
 Binary IO operations.

• **OS, Unix, Date, Time, Timer**
 Operating systems types and operations.
ML Type Inference

One of the most novel aspects of ML is the fact that it infers types for all user declarations. How does this type inference mechanism work?

Essentially, the ML compiler creates an unknown type for each declaration the user makes. It then solves for these unknowns using known types and a set of type inference rules. That is, for a user-defined identifier i, ML wants to determine $T(i)$, the type of i.
The type inference rules are:

1. The types of all predefined literals, constants and functions are known in advance. They may be looked-up and used. For example,

 2 : int
 true : bool
 [] : 'a list
 :: : 'a * 'a list -> 'a list

2. All occurrences of the same symbol (using scoping rules) have the same type.

3. In the expression
 \(I = J \)
 we know \(T(I) = T(J) \).
4. In a conditional
 \[(\text{if } E_1 \text{ then } E_2 \text{ else } E_3)\]
 we know that
 \[T(E_1) = \text{bool},\]
 \[T(E_2) = T(E_3) = T(\text{conditional})\]

5. In a function call
 \[(f \ x)\]
 we know that if \(T(f) = 'a \rightarrow 'b\) then \(T(x) = 'a\) and \(T(f \ x) = 'b\)

6. In a function definition
 \[
 \text{fun } f \ x = \text{expr};
 \text{if } t(x) = 'a \text{ and } T(\text{expr}) = 'b
 \text{then } T(f) = 'a \rightarrow 'b
 \]

7. In a tuple \((e_1,e_2, \ldots, e_n)\)
 if we know that
 \[T(e_i) = 'a_i \ 1 \leq i \leq n\]
 then \[T(e_1,e_2, \ldots, e_n) = 'a_1* 'a_2* \ldots* 'a_n\]
8. In a record
\{ a=e_1, b=e_2, \ldots \}
if $T(e_i) = 'a_i \ 1 \leq i \leq n$ then
the type of the record =
\{a:'a_1, b:'a_2, \ldots \}

9. In a list $[v_1,v_2, \ldots v_n]$ if we know that
$T(v_i) = 'a_i \ 1 \leq i \leq n$
then we know that
'a_1='a_2=\ldots='a_n and
$T([v_1,v_2, \ldots v_n]) = 'a_1 \text{ list}$
To Solve for Types:

1. Assign each untyped symbol its own distinct type variable.
2. Use rules (1) to (9) to solve for and simplify unknown types.
3. Verify that each solution “works” (causes no type errors) throughout the program.

Examples

Consider

\[
\text{fun fact}(n) = \begin{cases}
1 & \text{if } n = 1 \\
1 & \text{else n*fact(n-1)}
\end{cases}
\]

To begin, we’ll assign type variables:

\[T(\text{fact}) = 'a \rightarrow 'b \]
\[T(n) = 'c \] (fact is a function)
Now we begin to solve for the types 'a, 'b and 'c must represent.

We know (rule 5) that 'c = 'a since n is the argument of fact.

We know (rule 3) that 'c = T(1) = int since n=1 is part of the definition.

We know (rule 4) that T(1) = T(if expression) = 'b since the if expression is the body of fact.

Thus, we have

'a = 'b = 'c = int, SO

T(fact) = int -> int

T(n) = int

These types are correct for all occurrences of fact and n in the definition.
A Polymorphic Function:

fun leng(L) =
 if L = []
 then 0
 else 1+len(tl L);

To begin, we know that

T([]) = 'a list and
T(tl) = 'b list -> 'b list

We assign types to leng and L:

T(leng) = 'c -> 'd
T(L) = 'e

Since L is the argument of leng,

'e = 'c

From the expression L=[] we know

'e = 'a list
From the fact that 0 is the result of the then, we know the if returns an int, so 'd = int.

Thus \(T(leng) = 'a \text{ list } \rightarrow \text{ int} \)

and

\(T(L) = 'a \text{ list} \)

These solutions are type correct throughout the definition.
Type Inference for Patterns

Type inference works for patterns too. Consider

```haskell
fun leng [] = 0
    | leng (a::b) = 1 + leng b;
```

We first create type variables:

- \(T(\text{leng}) = 'a \to 'b \)
- \(T(a) = 'c \)
- \(T(b) = 'd \)

From \(\text{leng} [] \) we conclude that

- \('a = 'e \text{ list} \)

From \(\text{leng} [] = 0 \) we conclude that

- \('b = \text{int} \)

From \(\text{leng} (a::b) \) we conclude that
'c ='e and 'd = 'e list

Thus we have

T(leng) = 'e list -> int
T(a) = 'e
T(b) = 'e list

This solution is type correct throughout the definition.
Not Everything can be Automatically Typed in ML

Let's try to type

```ml
fun f x = (x x);
```

We assume

\[T(f) = \text{'a} \to \text{'b} \]
\[t(x) = \text{'c} \]

Now (as usual) \(\text{'a} = \text{'c} \) since \(x \) is the argument of \(f \).

From the call \((x x)\) we conclude that \(\text{'c} \) must be of the form \(\text{'d} \to \text{'e} \) (since \(x \) is being used as a function).

Moreover, \(\text{'c} = \text{'d} \) since \(x \) is an argument in \((x x)\).

Thus \(\text{'c} = \text{'d} \to \text{'e} = \text{'c} \to \text{'e} \).

But \(\text{'c} = \text{'c} \to \text{'e} \) has no solution, so in ML this definition is invalid. We can't pass a function to itself.
as an argument—the type system doesn’t allow it.
In Scheme this is allowed:
(define (f x) (x x))
but a call like
(f f)
certainly doesn’t do anything good!
Type Unions

Let’s try to type
```haskell
fun f g = ((g 3), (g true));
```
Now the type of `g` is `'a -> 'b`
since `g` is used as a function.
The call `(g 3)` says `'a = int` and
the call `(g true)` says `'a = boolean`.
Does this mean `g` is polymorphic?
That is, is the type of `f`
```haskell
f : ('a->'b)->'b*'b
```
NO!
All functions have the type `'a -> 'b` but not all functions can be passed to `f`.
Consider `not: bool->bool`.
The call `(not 3)` is certainly illegal.
What we’d like in this case is a *union* type. That is, we’d like to be able to type `g` as `(int | bool) -> 'b` which ML doesn’t allow.

Fortunately, ML does allow type constructors, which are just what we need.

Given

```
datatype T =
  I of int | B of bool;
```

we can redefine `f` as

```
fun f g =
  (g (I(3)), g (B(true)));
val f = fn : (T -> 'a) -> 'a * 'a
```
Finally, note that in a definition like

```ml
let
  val f = fn x => x (* id function*)
in (f 3, f true)
end;
```

type inference works fine:

```ml
val it = (3, true) : int * bool
```

Here we define \(f \) in advance, so its type is known when calls to it are seen.