
388CS 538 Spring 2008©

Reading Assignment
• Webber: Chapters 19, 20 and 22

389CS 538 Spring 2008©

Prolog
Prolog presents a view of
programming that is very
different from most other
programming languages.
A famous text book is entitled
“Algorithms + Data Structures =
Programs”
This formula represents well the
conventional approach to
programming that most
programming languages support.
In Prolog there is an alternative
rule of programming:
“Algorithms = Logic + Control”
This rule encompasses a non-
procedural view of programming.
Logic (what the program is to
compute) comes first.

390CS 538 Spring 2008©

Then control (how to implement
the logic) is considered.
In Prolog we program the logic of
a program, but the Prolog system
automatically implements the
control.
Logic is essential—control is just
efficiency.

391CS 538 Spring 2008©

Logic Programming
Prolog implements logic
programming.
In fact Prolog means
Programming in Logic.

In Prolog programs are
statements of rules and facts.
Program execution is
deduction—can an answer be
inferred from known rules and
facts.
Prolog was developed in 1972
by Kowalski and Colmerauer at
the University of Marseilles.

392CS 538 Spring 2008©

Elementary Data Objects
• In Prolog integers and atoms are the

elementary data objects.

• Integers are ordinary integer literals
and values.

• Atoms are identifiers that begin with a
lower-case letter (much like symbolic
values in Scheme).

• In Prolog data objects are called
terms.

• In Prolog we define relations among
terms (integers, atoms or other
terms).

• A predicate names a relation.
Predicates begin with lower-case
letters.

• To define a predicate, we write clauses
that define the relation.

393CS 538 Spring 2008©

• There are two kinds of program
clauses, facts and rules.

• A fact is a predicate that prefixes a
sequence of terms, and which ends
with a period (“.”).

As an example, consider the
following facts which define
“fatherOf” and “motherOf”
relations.

fatherOf(tom,dick).

fatherOf(dick,harry).

fatherOf(jane,harry).

motherOf(tom,judy).

motherOf(dick,mary).

motherOf(jane,mary).

The symbols fatherOf and motherOf
are predicates. The symbols tom,
dick, harry, judy, mary and jane are
atoms.

394CS 538 Spring 2008©

Once we have entered rules and
facts that define relations, we can
make queries (ask the Prolog
system questions).
Prolog has two interactive modes
that you can switch between.
To enter definition mode (to define
rules and facts) you enter
[user].

You then enter facts and rules,
terminating this phase with ^D
(end of file).
Alternatively, you can enter
['filename'].

to read in rules and facts stored in
the file named filename.

395CS 538 Spring 2008©

When you start Prolog, or after
you leave definitions mode, you
are in query mode.
In query mode you see a prompt
of the form
| ?- or ?- (depending on the
system you are running).
In query mode, Prolog allows you
to ask whether a relation among
terms is true or false.
Thus given our definition of
motherOf and fatherOf
relations, we can ask:
| ?- fatherOf(tom,dick).
yes

A “yes” response means that
Prolog is able to conclude from
the facts and rules it has been
given that the relation queried
does hold.

396CS 538 Spring 2008©

| ?- fatherOf(georgeW,george).
no

A “no” response to a query means
that Prolog is unable to conclude
that the relation holds from what
it has been told. The relation may
actually be true, but Prolog may
lack necessary facts or rules to
deduce this.

397CS 538 Spring 2008©

Variables in Queries
One of the attractive features of
Prolog is the fact that variables
may be included in queries. A
variable always begins with a
capital letter.
When a variable is seen, Prolog
tries to find a value (binding) for
the variable that will make the
queried relation true.
For example,
fatherOf(X,harry).

asks Prolog to find an value for X
such that X’s father is harry.
When we enter the query, Prolog
gives us a solution (if one can be
found):
 ?- fatherOf(X,harry).

 X = dick

398CS 538 Spring 2008©

If no solution can be found, it tells
us so:
| ?- fatherOf(Y,jane).
no

Since solutions to queries need
not be unique, Prolog will give us
alternate solutions if we ask for
them. We do so by entering a “;”
after a solution is printed. We get
a “no” when no more solutions
can be found:
| ?- fatherOf(X,harry).

X = dick ;
X = jane ;
no

399CS 538 Spring 2008©

Variables may be placed
anywhere in a query. Thus we
may ask
| ?- fatherOf(jane,X).

X = harry ;
no

We may use more than one
variable if we wish:
| ?- fatherOf(X,Y).
X = tom,

Y = dick ;
X = dick,

Y = harry ;
X = jane,

Y = harry ;

no
(This query displays all the
fatherOf relations).

400CS 538 Spring 2008©

Conjunction of Goals
More than one relation can be
included as the “goal” of a query.
A comma (“,”) is used as an AND
operator to indicate a conjunction
of goals—all must be satisfied by
a solution to the query.
| ?-
fatherOf(jane,X),motherOf(jane,Y).

X = harry,

Y = mary ;
no

A given variable may appear more
than once in a query. The same
value of the variable must be
used in all places in which the
variable appears (this is called
unification).

401CS 538 Spring 2008©

For example,
| ?-
fatherOf(tom,X),fatherOf(X,harry).

X = dick ;
no

402CS 538 Spring 2008©

Rules in Prolog
Rules allow us to state that a
relation will hold depending on
the truth (correctness) of other
relations.
In effect a rules says,
“If I know that certain relations
hold, then I also know that this
relation holds.”
A rule in Prolog is of the form
rel1 :- rel2, rel3, ... reln.

This says rel1 can be assumed
true if we can establish that rel2
and rel3 and all relations to reln
are true.
rel1 is called the head of the rule.

rel2 to reln form the body of the
rule.

403CS 538 Spring 2008©

Example
The following two rules define a
grandMotherOf relation using the
motherOf and fatherOf
relations:
grandMotherOf(X,GM) :-

 motherOf(X,M),
 motherOf(M,GM).

grandMotherOf(X,GM) :-

 fatherOf(X,F),
 motherOf(F,GM).

| ?- grandMotherOf(tom,GM).

GM = mary ;
no

| ?- grandMotherOf(dick,GM).
no

| ?- grandMotherOf(X,mary).

X = tom ;
no

404CS 538 Spring 2008©

As is the case for all
programming, in all languages,
you must be careful when you
define a rule that it correctly
captures the idea you have in
mind.
Consider the following rule that
defines a sibling relation
between two people:
sibling(X,Y) :-
motherOf(X,M), motherOf(Y,M),
fatherOf(X,F), fatherOf(Y,F).

This rule says that X and Y are
siblings if each has the same
mother and the same father.
But the rule is wrong!
Why?

405CS 538 Spring 2008©

Let’s give it a try:
| ?- sibling(X,Y).

X = Y = tom

Darn! That’s right, you can’t be
your own sibling. So we refine the
rule to force X and Y to be
distinct:
sibling(X,Y) :-
 motherOf(X,M), motherOf(Y,M),
 fatherOf(X,F), fatherOf(Y,F),
 not(X=Y).

(A few Prolog systems use “\+” for
not; but most include a not
relation.)
| ?- sibling(X,Y).
X = dick,

Y = jane ;
X = jane,

Y = dick ;
no

406CS 538 Spring 2008©

Note that distinct but equivalent
solutions
 (like X = dick,Y = jane vs.
X = jane,Y = dick) often appear

in Prolog solutions. You may
sometimes need to “filter out”
solutions that are effectively
redundant (perhaps by
formulating stricter or more
precise rules).

407CS 538 Spring 2008©

How Prolog Solves Queries
The unique feature of Prolog is
that it automatically chooses the
facts and rules needed to solve a
query.
But how does it make its choice?
It starts by trying to solve each
goal in a query, left to right (recall
goals are connected using “,”
which is the and operator).
For each goal it tries to match a
corresponding fact or the head of
a corresponding rule.

A fact or head of rule matches a
goal if:
• Both use the same predicate.

• Both have the same number of
terms following the predicate.

408CS 538 Spring 2008©

• Each term in the goal and fact or
rule head match (are equal),
possibly binding a free variable to
force a match.

For example, assume we wish to
match the following goal:
x(a,B)

This can match the fact
x(a,b).

or the head of the rule
x(Y,Z) :- Y = Z.

But x(a,B) can’t match
y(a,b) (wrong predicate name)
or
x(b,d) (first terms don’t match)
or
x(a,b,c) (wrong number of
terms).

409CS 538 Spring 2008©

If we succeed in matching a rule,
we have solved the goal in
question; we can go on to match
any remaining goals.
If we match the head of a rule, we
aren’t done—we add the body of
the rule to the list of goals that
must be solved.
Thus if we match the goal x(a,B)
with the rule
x(Y,Z) :- Y = Z.

then we must solve a=B which is
done by making B equal to a.

410CS 538 Spring 2008©

Backtracking
If we reach a point where a goal
can’t be matched, or the body of a
rule can’t be matched, we
backtrack to the last (most
recent) spot where a choice of
matching a particular fact or rule
was made. We then try to match a
different fact or rule. If this fails
we go back to the next previous
place where a choice was made
and try a different match there.
We try alternatives until we are
able to solve all the goals in our
query or until all possible choices
have been tried and found to fail.
If this happens, we answer “no”
the query can’t be solved.
As we try to match facts and rules
we try them in their order of
definition.

411CS 538 Spring 2008©

Example
Let’s trace how
| ?- grandMotherOf(tom,GM).

is solved.
Recall that
grandMotherOf(X,GM) :-
 motherOf(X,M),
 motherOf(M,GM).

grandMotherOf(X,GM) :-
 fatherOf(X,F),
 motherOf(F,GM).
fatherOf(tom,dick).
fatherOf(dick,harry).
fatherOf(jane,harry).
motherOf(tom,judy).
motherOf(dick,mary).
motherOf(jane,mary).

412CS 538 Spring 2008©

We try the first grandMotherOf
rule first.
This forces X = tom. We have to
solve
 motherOf(tom,M),
 motherOf(M,GM).

We now try to solve
motherOf(tom,M)

This forces M = judy.
We then try to solve
motherOf(judy,GM)

None of the motherOf rules
match this goal, so we backtrack.
No other motherOf rule can solve
motherOf(tom,M)

so we backtrack again and try the
second grandMotherOf rule:

413CS 538 Spring 2008©

grandMotherOf(X,GM) :-
 fatherOf(X,F),
 motherOf(F,GM).

This matches, forcing X = tom.
We have to solve
fatherOf(tom,F),
motherOf(F,GM).
We can match the first goal with
fatherOf(tom,dick).

This forces F = dick.
We then must solve
motherOf(dick,GM)

which can be matched by
motherOf(dick,mary).

We have matched all our goals, so
we know the query is true, with
GM = mary.

414CS 538 Spring 2008©

List Processing in Prolog
Prolog has a notation similar to
“cons cells” of Lisp and Scheme.
The “.” functor (predicate name)
acts like cons.
Hence .(a,b) in Prolog is
essentially the same as (a . b)
in Scheme.
Lists in Prolog are formed much
the same way as in Scheme and
ML:
[] is the empty list
[1,2,3] is an abbreviation for
.(1, .(2, .(3,[])))

just as
(1,2,3) in Scheme is an
abbreviation for
(cons 1 (cons 2 (cons 3 ())))

415CS 538 Spring 2008©

The notation [H|T] represents a
list with H matching the head of
the list and T matching the rest of
the list.
Thus [1,2,3] ≡ [1| [2,3]] ≡
[1,2| [3]] ≡ [1,2,3| []]

As in ML, “_” (underscore) can be
used as a wildcard or “don’t care”
symbol in matches.
Given the fact
 p([1,2,3,4]).

The query
 | ?- p([X|Y]).

answers
X = 1,

Y = [2,3,4]

416CS 538 Spring 2008©

The query
p([_,_,X|Y]).

answers
X = 3,

Y = [4]

417CS 538 Spring 2008©

List Operations in Prolog
List operations are defined using
rules and facts. The definitions
are similar to those used in
Scheme or ML, but they are non-
procedural.
That is, you don’t given an
execution order. Instead, you give
recursive rules and non-recursive
“base cases” that characterize the
operation you are defining.
Consider append:
 append([],L,L).

 append([H|T1],L2,[H|T3]) :-
 append(T1,L2,T3).

The first fact says that an empty
list (argument 1) appended to any
list L (argument 2) gives L
(argument 3) as its answer.

418CS 538 Spring 2008©

The rule in line 2 says that if you
take a list that begins with H and
has T1 as the rest of the list and
append it to a list L then the
resulting appended list will begin
with H.
Moreover, the rest of the resulting
list, T3, is the result of appending
T1 (the rest of the first list) with
L2 (the second input list).
The query
 | ?- append([1],[2,3],[1,2,3]).

answers
Yes

because with H=1, T1=[], L2
=[2,3] and T3=[2,3] it must be
the case that
append([],[2,3],[2,3]) is true
and fact (1) says that this is so.

419CS 538 Spring 2008©

Inverting Inputs and Outputs
In Prolog the division between
“inputs” and “outputs” is
intentionally vague. We can
exploit this. It is often possible to
“invert” a query and ask what
inputs would compute a given
output. Few other languages
allow this level of flexibility.
 Consider the query
append([1],X,[1,2,3]).

This asks Prolog to find a list X
such that if we append [1] to X
we will get [1,2,3].
 Prolog answers
X = [2,3]

How does it choose this answer?

420CS 538 Spring 2008©

First Prolog tries to match the
query against fact (1) or rule (2).
Fact (1) doesn’t match (the first
arguments differ) so we match
rule (2).
This gives us H=1, T1=[], L2=X
and T3 = [2,3].
We next have to solve the body of
rule (2) which is
append([],L2,[2,3]).

Fact (1) matches this, and tells us
that L2=[2,3]=X, and that’s our
answer!

421CS 538 Spring 2008©

The Member Relation
A common predicate when
manipulating lists is a
membership test—is a given
value a member of a list?
An “obvious” definition is a
recursive one similar to what we
might program in Scheme or ML:
member(X,[X|_]).
member(X,[_|Y]):- member(X,Y).

This definition states that the first
argument, X, is a member of the
second argument (a list) if X
matches the head of the list or if X
is (recursively) a member of the
rest of the list.

Note that we don’t have to “tell”
Prolog that X can’t be a member
of an empty list—if we don’t tell

422CS 538 Spring 2008©

Prolog that something is true, it
automatically assumes that it
must be false.
Thus saying nothing about
membership in an empty list is
the same as saying that
membership in an empty list is
impossible.
Since inputs and outputs in a
relation are blurred, we can use
member in an unexpected way—to
iterate through a list of values.

If we want to know if any member
of a list L satisfies a predicate p,
we can
simply write:
member(X,L),p(X).

423CS 538 Spring 2008©

There is no explicit iteration or
searching. We simply ask Prolog
to find an X such that
member(X,L) is true (X is in L)
and p(X) is true. Backtracking
will find the “right” value for X (if
any such X exists).
This is sometimes called the
“guess and verify” technique.
Thus we can query
member(X,[3,-3,0,10,-10]),
 (X > 0).

This asks for an X in the list
[3,-3,0,10,-10] which is
greater than 0.

Prolog answers
X = 3 ;
X = 10 ;

424CS 538 Spring 2008©

Note too that our “obvious”
definition of member is not the
only one possible.
An alternative definition (which is
far less obvious) is
member(X,L) :-
 append(_,[X|_],L).

This definition says X is a member
of L if I can take some list (whose
value I don’t care about) and
append it to a list that begins with
X (and which ends with values I
don’t care about) and get a list
equal to L.
Said more clearly, X is a member
of L if X is anywhere in the
“middle” of L.
Prolog solves a query involving
member by partitioning the list L
in all possible ways, and checking
to see if X ever is the head of the

425CS 538 Spring 2008©

second list. Thus for
member(X,[1,2,3]), it tries the
partition [] and [1,2,3]
(exposing 1 as a possible X), then
[1] and [2,3] (exposing 2) and
finally [1,2] and [3] (exposing
3).

