
407CS 538 Spring 2008©

How Prolog Solves Queries
The unique feature of Prolog is
that it automatically chooses the
facts and rules needed to solve a
query.
But how does it make its choice?
It starts by trying to solve each
goal in a query, left to right (recall
goals are connected using “,”
which is the and operator).
For each goal it tries to match a
corresponding fact or the head of
a corresponding rule.

A fact or head of rule matches a
goal if:
• Both use the same predicate.

• Both have the same number of
terms following the predicate.

408CS 538 Spring 2008©

• Each term in the goal and fact or
rule head match (are equal),
possibly binding a free variable to
force a match.

For example, assume we wish to
match the following goal:
x(a,B)

This can match the fact
x(a,b).

or the head of the rule
x(Y,Z) :- Y = Z.

But x(a,B) can’t match
y(a,b) (wrong predicate name)
or
x(b,d) (first terms don’t match)
or
x(a,b,c) (wrong number of
terms).

409CS 538 Spring 2008©

If we succeed in matching a rule,
we have solved the goal in
question; we can go on to match
any remaining goals.
If we match the head of a rule, we
aren’t done—we add the body of
the rule to the list of goals that
must be solved.
Thus if we match the goal x(a,B)
with the rule
x(Y,Z) :- Y = Z.

then we must solve a=B which is
done by making B equal to a.

410CS 538 Spring 2008©

Backtracking
If we reach a point where a goal
can’t be matched, or the body of a
rule can’t be matched, we
backtrack to the last (most
recent) spot where a choice of
matching a particular fact or rule
was made. We then try to match a
different fact or rule. If this fails
we go back to the next previous
place where a choice was made
and try a different match there.
We try alternatives until we are
able to solve all the goals in our
query or until all possible choices
have been tried and found to fail.
If this happens, we answer “no”
the query can’t be solved.
As we try to match facts and rules
we try them in their order of
definition.

411CS 538 Spring 2008©

Example
Let’s trace how
| ?- grandMotherOf(tom,GM).

is solved.
Recall that
grandMotherOf(X,GM) :-
 motherOf(X,M),
 motherOf(M,GM).

grandMotherOf(X,GM) :-
 fatherOf(X,F),
 motherOf(F,GM).
fatherOf(tom,dick).
fatherOf(dick,harry).
fatherOf(jane,harry).
motherOf(tom,judy).
motherOf(dick,mary).
motherOf(jane,mary).

412CS 538 Spring 2008©

We try the first grandMotherOf
rule first.
This forces X = tom. We have to
solve
 motherOf(tom,M),
 motherOf(M,GM).

We now try to solve
motherOf(tom,M)

This forces M = judy.
We then try to solve
motherOf(judy,GM)

None of the motherOf rules
match this goal, so we backtrack.
No other motherOf rule can solve
motherOf(tom,M)

so we backtrack again and try the
second grandMotherOf rule:

413CS 538 Spring 2008©

grandMotherOf(X,GM) :-
 fatherOf(X,F),
 motherOf(F,GM).

This matches, forcing X = tom.
We have to solve
fatherOf(tom,F),
motherOf(F,GM).
We can match the first goal with
fatherOf(tom,dick).

This forces F = dick.
We then must solve
motherOf(dick,GM)

which can be matched by
motherOf(dick,mary).

We have matched all our goals, so
we know the query is true, with
GM = mary.

414CS 538 Spring 2008©

List Processing in Prolog
Prolog has a notation similar to
“cons cells” of Lisp and Scheme.
The “.” functor (predicate name)
acts like cons.
Hence .(a,b) in Prolog is
essentially the same as (a . b)
in Scheme.
Lists in Prolog are formed much
the same way as in Scheme and
ML:
[] is the empty list
[1,2,3] is an abbreviation for
.(1, .(2, .(3,[])))

just as
(1,2,3) in Scheme is an
abbreviation for
(cons 1 (cons 2 (cons 3 ())))

415CS 538 Spring 2008©

The notation [H|T] represents a
list with H matching the head of
the list and T matching the rest of
the list.
Thus [1,2,3] ≡ [1| [2,3]] ≡
[1,2| [3]] ≡ [1,2,3| []]

As in ML, “_” (underscore) can be
used as a wildcard or “don’t care”
symbol in matches.
Given the fact
 p([1,2,3,4]).

The query
 | ?- p([X|Y]).

answers
X = 1,

Y = [2,3,4]

416CS 538 Spring 2008©

The query
p([_,_,X|Y]).

answers
X = 3,

Y = [4]

417CS 538 Spring 2008©

List Operations in Prolog
List operations are defined using
rules and facts. The definitions
are similar to those used in
Scheme or ML, but they are non-
procedural.
That is, you don’t given an
execution order. Instead, you give
recursive rules and non-recursive
“base cases” that characterize the
operation you are defining.
Consider append:
 append([],L,L).

 append([H|T1],L2,[H|T3]) :-
 append(T1,L2,T3).

The first fact says that an empty
list (argument 1) appended to any
list L (argument 2) gives L
(argument 3) as its answer.

418CS 538 Spring 2008©

The rule in line 2 says that if you
take a list that begins with H and
has T1 as the rest of the list and
append it to a list L then the
resulting appended list will begin
with H.
Moreover, the rest of the resulting
list, T3, is the result of appending
T1 (the rest of the first list) with
L2 (the second input list).
The query
 | ?- append([1],[2,3],[1,2,3]).

answers
Yes

because with H=1, T1=[], L2
=[2,3] and T3=[2,3] it must be
the case that
append([],[2,3],[2,3]) is true
and fact (1) says that this is so.

419CS 538 Spring 2008©

Inverting Inputs and Outputs
In Prolog the division between
“inputs” and “outputs” is
intentionally vague. We can
exploit this. It is often possible to
“invert” a query and ask what
inputs would compute a given
output. Few other languages
allow this level of flexibility.
 Consider the query
append([1],X,[1,2,3]).

This asks Prolog to find a list X
such that if we append [1] to X
we will get [1,2,3].
 Prolog answers
X = [2,3]

How does it choose this answer?

420CS 538 Spring 2008©

First Prolog tries to match the
query against fact (1) or rule (2).
Fact (1) doesn’t match (the first
arguments differ) so we match
rule (2).
This gives us H=1, T1=[], L2=X
and T3 = [2,3].
We next have to solve the body of
rule (2) which is
append([],L2,[2,3]).

Fact (1) matches this, and tells us
that L2=[2,3]=X, and that’s our
answer!

421CS 538 Spring 2008©

The Member Relation
A common predicate when
manipulating lists is a
membership test—is a given
value a member of a list?
An “obvious” definition is a
recursive one similar to what we
might program in Scheme or ML:
member(X,[X|_]).
member(X,[_|Y]):- member(X,Y).

This definition states that the first
argument, X, is a member of the
second argument (a list) if X
matches the head of the list or if X
is (recursively) a member of the
rest of the list.

Note that we don’t have to “tell”
Prolog that X can’t be a member
of an empty list—if we don’t tell

422CS 538 Spring 2008©

Prolog that something is true, it
automatically assumes that it
must be false.
Thus saying nothing about
membership in an empty list is
the same as saying that
membership in an empty list is
impossible.
Since inputs and outputs in a
relation are blurred, we can use
member in an unexpected way—to
iterate through a list of values.

If we want to know if any member
of a list L satisfies a predicate p,
we can
simply write:
member(X,L),p(X).

423CS 538 Spring 2008©

There is no explicit iteration or
searching. We simply ask Prolog
to find an X such that
member(X,L) is true (X is in L)
and p(X) is true. Backtracking
will find the “right” value for X (if
any such X exists).
This is sometimes called the
“guess and verify” technique.
Thus we can query
member(X,[3,-3,0,10,-10]),
 (X > 0).

This asks for an X in the list
[3,-3,0,10,-10] which is
greater than 0.

Prolog answers
X = 3 ;
X = 10 ;

424CS 538 Spring 2008©

Note too that our “obvious”
definition of member is not the
only one possible.
An alternative definition (which is
far less obvious) is
member(X,L) :-
 append(_,[X|_],L).

This definition says X is a member
of L if I can take some list (whose
value I don’t care about) and
append it to a list that begins with
X (and which ends with values I
don’t care about) and get a list
equal to L.
Said more clearly, X is a member
of L if X is anywhere in the
“middle” of L.
Prolog solves a query involving
member by partitioning the list L
in all possible ways, and checking
to see if X ever is the head of the

425CS 538 Spring 2008©

second list. Thus for
member(X,[1,2,3]), it tries the
partition [] and [1,2,3]
(exposing 1 as a possible X), then
[1] and [2,3] (exposing 2) and
finally [1,2] and [3] (exposing
3).

426CS 538 Spring 2008©

Sorting Algorithms
Sorting algorithms are good
examples of Prolog’s definitional
capabilities. In a Prolog definition
the “logic” of a sorting algorithm
is apparent, stripped of the
cumbersome details of data
structures and control structures
that dominate algorithms in other
programming languages.
Consider the simplest possible
sort imaginable, which we’ll call
the “naive sort.”
At the simplest level a sorting of a
list L requires just two things:
• The sorting is a permutation (a

reordering) of the values in L.

• The values are “in order”
(ascending or descending).

427CS 538 Spring 2008©

We can implement this concept of
a sort directly in Prolog. We
(a) permute an input list
(b) check if it is in sorted order
(c) repeat (a) & (b) until a sorting

 is found.

428CS 538 Spring 2008©

Permutations
Let’s first look at how
permutations are defined in
Prolog. In most languages
generating permutations is non-
trivial—you need data structures
to store the permutations you are
generating and control structures
to visit all permutations in some
order.
In Prolog, permutations are
defined quite concisely, though
with a bit of subtlety:
perm(X,Y) will be true if list Y is a
permutation of list X.
Only two definitions are needed:
perm([],[]).

perm(L,[H|T]) :-
 append(V,[H|U],L),
 append(V,U,W), perm(W,T).

429CS 538 Spring 2008©

The first definition,
perm([],[]).

is trivial. An empty list may only
be permuted into another empty
list.
The second definition is rather
more complex:
perm(L,[H|T]) :-
append(V,[H|U],L),
 append(V,U,W), perm(W,T).

This rule says a list L may be
permuted in to a list that begins
with H and ends with list T if:
(1) L may be partitioned into two

lists, V and [H|U]. (That is, H is
 somewhere in the

“middle” of L).
(2) Lists V and U (all of L except H)
 may be appended into list W.
(3) List W may be permuted into T.

430CS 538 Spring 2008©

Let’s see perm in action:
| ?- perm([1,2,3],X).

X = [1,2,3] ;

X = [1,3,2] ;

X = [2,1,3] ;

X = [2,3,1] ;

X = [3,1,2] ;

X = [3,2,1] ;
no

We’ll trace how the first few
answers are computed. Note
though that all permutations are
generated, and with no apparent
data structures or control
structures.
We start with L=[1,2,3] and
X=[H|T].
We first solve
append(V,[H|U],L), which

431CS 538 Spring 2008©

simplifies to
append(V,[H|U],[1,2,3]).
One solution to this goal is
V = [], H = 1, U = [2,3]

We next solve append(V,U,W)
which simplifies to
append([],[2,3],W).
The only solution for this is
W=[2,3].
Finally, we solve perm(W,T),
which simplifies to
perm([2,3],T).
One solution to this is T=[2,3].
This gives us our first solution:
[H|T]=[1,2,3].
To get our next solution we
backtrack. Where is the most
recent place we made a choice of
how to solve a goal?

432CS 538 Spring 2008©

It was at perm([2,3],T). We
chose T=[2,3], but T=[3,2] is
another solution. Using this
solution, we get out next answer
[H|T]=[1,3,2].
Let’s try one more. We backtrack
again. No more solutions are
possible for perm([2,3],T), so
we backtrack to an earlier choice
point.
At append(V,[H|U],[1,2,3])
another solution is
V=[1], H = 2, U = [3]

Using this binding, we solve
append(V,U,W) which simplifies
to append([1],[3],W). The
solution to this must be W=[1,3].
We then solve perm(W,T) which
simplifies to perm([1,3],T). One
solution to this is T=[1,3]. This

433CS 538 Spring 2008©

makes our third solution for
[H|T] = [2,1,3].
You can check out the other
bindings that lead to the last
three solutions.

434CS 538 Spring 2008©

A Permutation Sort
Now that we know how to
generate permutations, the
definition of a permutation sort is
almost trivial.
We define an inOrder relation
that characterizes our notion of
when a list is properly sorted:
inOrder([]).

inOrder([_]).

inOrder([A,B|T]) :-
 A =< B, inOrder([B|T]).

These definitions state that a null
list, and a list with only one
element are always in sorted
order. Longer lists are in order if
the first two elements are in
proper order. (A=<B) checks this
and then the rest of the list,

435CS 538 Spring 2008©

excluding the first element, is
checked.
Now our naive permutation sort is
only one line long:
naiveSort(L1,L2) :-
 perm(L1,L2), inOrder(L2).

And the definition works too!
| ?-
naiveSort([1,2,3],[3,2,1]).
no

?- naiveSort([3,2,1],L).

L = [1,2,3] ;
no

| ?-
naiveSort([7,3,88,2,1,6,77,
 -23,5],L).
L = [-23,1,2,3,5,6,7,77,88]

436CS 538 Spring 2008©

Though this sort works, it is
hopelessly inefficient—it
repeatedly “shuffles” the input
until it happens to find an
ordering that is sorted. The
process is largely undirected. We
don’t “aim” toward a correct
ordering, but just search until we
get lucky.

