
426CS 538 Spring 2008©

Sorting Algorithms
Sorting algorithms are good
examples of Prolog’s definitional
capabilities. In a Prolog definition
the “logic” of a sorting algorithm
is apparent, stripped of the
cumbersome details of data
structures and control structures
that dominate algorithms in other
programming languages.
Consider the simplest possible
sort imaginable, which we’ll call
the “naive sort.”
At the simplest level a sorting of a
list L requires just two things:
• The sorting is a permutation (a

reordering) of the values in L.

• The values are “in order”
(ascending or descending).

427CS 538 Spring 2008©

We can implement this concept of
a sort directly in Prolog. We
(a) permute an input list
(b) check if it is in sorted order
(c) repeat (a) & (b) until a sorting

 is found.

428CS 538 Spring 2008©

Permutations
Let’s first look at how
permutations are defined in
Prolog. In most languages
generating permutations is non-
trivial—you need data structures
to store the permutations you are
generating and control structures
to visit all permutations in some
order.
In Prolog, permutations are
defined quite concisely, though
with a bit of subtlety:
perm(X,Y) will be true if list Y is a
permutation of list X.
Only two definitions are needed:
perm([],[]).

perm(L,[H|T]) :-
 append(V,[H|U],L),
 append(V,U,W), perm(W,T).

429CS 538 Spring 2008©

The first definition,
perm([],[]).

is trivial. An empty list may only
be permuted into another empty
list.
The second definition is rather
more complex:
perm(L,[H|T]) :-
append(V,[H|U],L),
 append(V,U,W), perm(W,T).

This rule says a list L may be
permuted in to a list that begins
with H and ends with list T if:
(1) L may be partitioned into two

lists, V and [H|U]. (That is, H is
 somewhere in the

“middle” of L).
(2) Lists V and U (all of L except H)
 may be appended into list W.
(3) List W may be permuted into T.

430CS 538 Spring 2008©

Let’s see perm in action:
| ?- perm([1,2,3],X).

X = [1,2,3] ;

X = [1,3,2] ;

X = [2,1,3] ;

X = [2,3,1] ;

X = [3,1,2] ;

X = [3,2,1] ;
no

We’ll trace how the first few
answers are computed. Note
though that all permutations are
generated, and with no apparent
data structures or control
structures.
We start with L=[1,2,3] and
X=[H|T].
We first solve
append(V,[H|U],L), which

431CS 538 Spring 2008©

simplifies to
append(V,[H|U],[1,2,3]).
One solution to this goal is
V = [], H = 1, U = [2,3]

We next solve append(V,U,W)
which simplifies to
append([],[2,3],W).
The only solution for this is
W=[2,3].
Finally, we solve perm(W,T),
which simplifies to
perm([2,3],T).
One solution to this is T=[2,3].
This gives us our first solution:
[H|T]=[1,2,3].
To get our next solution we
backtrack. Where is the most
recent place we made a choice of
how to solve a goal?

432CS 538 Spring 2008©

It was at perm([2,3],T). We
chose T=[2,3], but T=[3,2] is
another solution. Using this
solution, we get out next answer
[H|T]=[1,3,2].
Let’s try one more. We backtrack
again. No more solutions are
possible for perm([2,3],T), so
we backtrack to an earlier choice
point.
At append(V,[H|U],[1,2,3])
another solution is
V=[1], H = 2, U = [3]

Using this binding, we solve
append(V,U,W) which simplifies
to append([1],[3],W). The
solution to this must be W=[1,3].
We then solve perm(W,T) which
simplifies to perm([1,3],T). One
solution to this is T=[1,3]. This

433CS 538 Spring 2008©

makes our third solution for
[H|T] = [2,1,3].
You can check out the other
bindings that lead to the last
three solutions.

434CS 538 Spring 2008©

A Permutation Sort
Now that we know how to
generate permutations, the
definition of a permutation sort is
almost trivial.
We define an inOrder relation
that characterizes our notion of
when a list is properly sorted:
inOrder([]).

inOrder([_]).

inOrder([A,B|T]) :-
 A =< B, inOrder([B|T]).

These definitions state that a null
list, and a list with only one
element are always in sorted
order. Longer lists are in order if
the first two elements are in
proper order. (A=<B) checks this
and then the rest of the list,

435CS 538 Spring 2008©

excluding the first element, is
checked.
Now our naive permutation sort is
only one line long:
naiveSort(L1,L2) :-
 perm(L1,L2), inOrder(L2).

And the definition works too!
| ?-
naiveSort([1,2,3],[3,2,1]).
no

?- naiveSort([3,2,1],L).

L = [1,2,3] ;
no

| ?-
naiveSort([7,3,88,2,1,6,77,
 -23,5],L).
L = [-23,1,2,3,5,6,7,77,88]

436CS 538 Spring 2008©

Though this sort works, it is
hopelessly inefficient—it
repeatedly “shuffles” the input
until it happens to find an
ordering that is sorted. The
process is largely undirected. We
don’t “aim” toward a correct
ordering, but just search until we
get lucky.

437CS 538 Spring 2008©

A Bubble Sort
Perhaps the best known sorting
technique is the interchange or
“bubble” sort. The idea is simple.
We examine a list of values,
looking for a pair of adjacent
values that are “out of order.” If
we find such a pair, we swap the
two values (placing them in
correct order). Otherwise, the
whole list must be in sorted order
and we are done.
In conventional languages we
need a lot of code to search for
out-of-order pairs, and to
systematically reorder them. In
Prolog, the whole sort may be
defined in a few lines:

438CS 538 Spring 2008©

bubbleSort(L,L) :- inOrder(L).

bubbleSort(L1,L2) :-
 append(X,[A,B|Y],L1), A > B,
 append(X,[B,A|Y],T),
 bubbleSort(T,L2).

The first line says that if L is
already in sorted order, we are
done.
The second line is a bit more
complex. It defines what it means
for a list L2 to be a sorting for list
L1, using our insight that we
should swap out-of-order
neighbors. We first partition list
L1 into two lists, X and [A,B|Y].
This “exposes” two adjacent
values in L, A and B. Next we
verify that A and B are out-of-
order (A>B). Next, in
append(X,[B,A|Y],T), we
determine that list T is just our

439CS 538 Spring 2008©

input L, with A and B swapped
into B followed by A.
Finally, we verify that
bubbleSort(T,L2) holds. That
is, T may be bubble-sorted into
L2.
This approach is rather more
directed than our permutation
sort—we look for an out-of-order
pair of values, swap them, and
then sort the “improved” list.
Eventually there will be no more
out-of-order pairs, the list will be
in sorted order, and we will be
done.

440CS 538 Spring 2008©

Merge Sort
Another popular sort in the
“merge sort” that we have already
seen in Scheme and ML. The idea
here is to first split a list of length
L into two sublists of length L/2.
Each of these two lists is
recursively sorted. Finally, the two
sorted sublists are merged
together to form a complete
sorted list.
The bubble sort can take time
proportional to n2 to sort n
elements (as many as n2/2 swaps
may be needed). The merge sort
does better—it takes time
proportional to n log2 n to sort n
elements (a list of size n can only
be split in half log2 n times).

441CS 538 Spring 2008©

We first need Prolog rules on how
to split a list into two equal
halves:
split([],[],[]).
split([A],[A],[]).
split([A,B|T],[A|P1],[B|P2]) :-
 split(T,P1,P2).

The first two lines characterize
trivial splits. The third rule
distributes one of the first two
elements to each of the two
sublists, and then recursively
splits the rest of the list.

442CS 538 Spring 2008©

We also need rules that
characterize how to merge two
sorted sublists into a complete
sorted list:

merge([],L,L).
merge(L,[],L).
merge([A|T1],[B|T2],[A|L2]) :-
 A =< B, merge(T1,[B|T2],L2).
merge([A|T1],[B|T2],[B|L2]) :-
 A > B, merge([A|T1],T2,L2).

The first 2 lines handle merging
null lists. The third line handles
the case where the head of the
first sublist is ≤ the head of the
second sublist; the final rule
handles the case where the head
of the second sublist is smaller.

443CS 538 Spring 2008©

With the above definitions, a
merge sort requires only three
lines:
mergeSort([],[]).

mergeSort([A],[A]).
mergeSort(L1,L2) :-
 split(L1,P1,P2),
 mergeSort(P1,S1),
mergeSort(P2,S2),
merge(S1,S2,L2).

The first two lines handle the
trivial cases of lists of length 0 or
1. The last line contains the full
“logic” of a merge sort: split the
input list, L into two half-sized
lists P1 and P2. Then merge sort
P1 into S1 and P2 into S2. Finally,
merge S1 and S2 into a sorted list
L2. That’s it!

444CS 538 Spring 2008©

Quick Sort
The merge sort partitions its input
list rather blindly, alternating
values between the two lists.
What if we partitioned the input
list based on values rather than
positions?
The quick sort does this. It selects
a “pivot” value (the head of the
input list) and divides the input
into two sublists based on
whether the values in the list are
less than the pivot or greater than
or equal to the pivot. Next the
two sublists are recursively
sorted. But now, after sorting, no
merge phase is needed. Rather,
the two sorted sublists can simply
be appended, since we know all
values in the first list are less than
all values in the second list.

445CS 538 Spring 2008©

We need a Prolog relation that
characterizes how we will do our
partitioning. We we define
partition(E,L1,L2,L3) to be
true if L1 can be partitioned into
L2 and L3 using E as the pivot
element. The necessary rules are:

partition(E,[],[],[]).
partition(E,[A|T1],[A|T2],L3) :-
 A<E, partition(E,T1,T2,L3).
partition(E,[A|T1],L2,[A|T3]) :-
 A>=E, partition(E,T1,L2,T3)

The first line defines a trivial
partition of a null list. The second
line handles the case in which the
first element of the list to be
partitioned is less than the pivot,
while the final line handles the
case in which the list head is
greater than or equal to the pivot.

446CS 538 Spring 2008©

With our notion of partitioning
defined, the quicksort itself
requires only 2 lines:

qsort([],[]).
qsort([A|T],L) :-
partition(A,T,L1,L2),
qsort(L1,S1),qsort(L2,S2),
append(S1,[A|S2],L).

The first line defines a trivial sort
of an empty list.
The second line says to sort a list
that begins with A and ends with
list T, we partition T into sublists
L1 and L2, based on A. Then we
recursively quick sort L1 into S1
and L2 into S2. Finally we append
S1 to [A|S2]
(A must be > all values in S1 and A
must be ≤ all values in S2). The
result is L, a sorting of [A|T].

447CS 538 Spring 2008©

Arithmetic in Prolog
The = predicate can be used to
test bound variables for equality
(actually, identity).
If one or both of =’s arguments are
free variables, = forces a binding
or an equality constraint.
Thus
| ?- 1=2.
no

| ?- X=2.

X = 2

| ?- Y=X.

Y = X = _10751

| ?- X=Y, X=joe.

X = Y = joe

448CS 538 Spring 2008©

Arithmetic Terms are Symbolic
Evaluation of an arithmetic term
into a numeric value must be
forced.
That is, 1+2 is an infix
representation of the relation
+(1,2). This term is not an
integer!
Therefore
| ?- 1+2=3.
no

To force arithmetic evaluation, we
use the infix predicate is.
The right-hand side of is must be
all ground terms (literals or
variables that are already bound).
No free (unbound) variables are
allowed.

449CS 538 Spring 2008©

Hence
|?- 2 is 1+1.
yes

| ?- X is 3*4.
X = 12

| ?- Y is Z+1.
! Instantiation error in argument
2 of is/2
! goal: _10712 is _10715+1

The requirement that the right-
hand side of an is relation be
ground is essentially procedural.
It exists to avoid having to invert
complex equations. Consider,

(0 is (I**N)+(J**N)-K**N)), N>2.

450CS 538 Spring 2008©

Counting in Prolog
Rules that involve counting often
use the is predicate to evaluate a
numeric value.
Consider the relation len(L,N)
that is true if the length of list L is
N.
len([],0).

len([_|T],N) :-
 len(T,M), N is M+1.

| ?- len([1,2,3],X).

X = 3

| ?- len(Y,2).

Y = [_10903,_10905]

The symbols _10903 and _10905
are “internal variables” created as
needed when a particular value is
not forced in a solution.

