Arithmetic Terms are Symbolic

Evaluation of an arithmetic term into a numeric value must be forced.
That is, $\mathbf{1 + 2}$ is an infix representation of the relation $+(1,2)$. This term is not an integer!
Therefore
| ? $-1+2=3$.
no
To force arithmetic evaluation, we use the infix predicate is.
The right-hand side of is must be all ground terms (literals or variables that are already bound). No free (unbound) variables are allowed.

Counting in Prolog

Rules that involve counting often use the is predicate to evaluate a numeric value.
Consider the relation len (\mathbf{L}, N)
that is true if the length of list L is
N .

```
len([],0).
len([_|T],N) :-
    len(T,M), N is M+1.
| ?- len([1,2,3],x).
x = 3
    | ?- len(Y,2).
y = [_10903,_10905]
```

The symbols _10903 and _10905 are "internal variables" created as needed when a particular value is not forced in a solution.

Hence

```
|?- 2 is 1+1.
yes
| ?- x is 3*4.
x = 12
    ?- Y is Z+1.
! Instantiation error in argument
2 of is/2
! goal: __10712 is _10715+1
```

The requirement that the righthand side of an is relation be ground is essentially procedural. It exists to avoid having to invert complex equations. Consider,
(0 is (I**N)+(J**N)-K**N), N>2.

Debuqging Proloq

Care is required in developing and testing Prolog programs because the language is untyped;
undeclared predicates or relations are simply treated as false.
Thus in a definition like

```
adj([A,B|_]) :- A=B.
adj([_,B|T]) :- adk([B|T]).
?- adj([1,2,2]).
no
```

(Some Prolog systems warn when an undefined relation is referenced, but many others don't).

Similarly, given

```
member (A, [A|_]).
member(A,[_|T]) :-
    member(A,[T]).
| ?- member(2,[1,2]).
Infinite recursion! (Why?)
```

If you're not sure what is going on, Prolog's trace feature is very handy.
The command
trace.
turns on tracing. (notrace turns tracing off).
Hence

```
| ?- trace.
yes
[trace]
    ?- member(2,[1,2]).
```


Termination Issues in Prolog

Searching infinite domains (like integers) can lead to non-
termination, with Prolog trying every value.
Consider
odd(1).
odd(N) :- odd(M), N is $M+2$.
| ? - odd(X).
x = 1 ;
x = 3 ;
$x=5$;
$x=7$
(1) 0 Call: member $(2,[1,2])$?
(1) 1 Head [1->2]:
member (2, [1,2]) ?
(1) 1 Head [2]:
member (2, [1,2]) ?
(2) 1 Call: member (2,[[2]]) ?
(2) 2 Head [1->2]:
member (2, [[2]]) ?
(2) 2 Head [2]:
member (2, [[2]]) ?
(3) 2 Call: member (2,[[]]) ?
(3) 3 Head [1->2]:
member (2,[[]]) ?
(3) 3 Head [2]: member(2,[[]])
?
(4) 3 Call: member(2,[[]]) ?
(4) 4 Head [1->2]:
member (2,[[]]) ?
(4) 4 Head [2]: member (2, [[]]) $?$
(5) 4 Call: member(2,[[]]) ?

A query
| ? - odd(x), x=2.
going into an infinite search, generating each and every odd integer and finding none is equal to 2 !
The obvious alternative, odd(2) (which is equivalent to $\mathrm{x}=2$, odd (X)) also does an infinite, but fruitless search. We'll soon learn that Prolog does have a mechanism to "cut off" fruitless searches.

Definition Order can Matter

Ideally, the order of definition of facts and rules should not matter.
But,
in practice definition order can matter. A good general guideline is to define facts before rules. To see why, consider a very complete database of motherof relations that goes back as far as motherof (cain, eve).
Now we define
isMortal(X) :-
isMortal(Y), motherOf(X,Y).
isMortal(eve).
isMortal(Z), motherof(y,z).
An infinite expansion ensues.
The solution is simple-place the "base case" fact that terminates recursion first.
If we use
isMortal (eve).
isMortal(X) :-
isMortal(Y), motherOf(X,Y).
yes
| ?- isMortal(eve).
yes
But now another problem appears!
If we ask
| ?- isMortal(clarkKent).
we go into another infinite search!
Why?
The problem is that Clark Kent is from the planet Krypton, and

These definitions state that the first woman was mortal, and all individuals descended from her are also mortal.
But when we try as trivial a query as
| ?- isMortal(eve).
we go into an infinite search!
Why?
Let's trace what Prolog does when it sees
|?- isMortal(eve).
It matches with the first definition involving isMortal, which is
isMortal(X) :-
isMortal(Y), motherOf(X,Y).
It sets $\mathbf{X}=$ eve and tries to solve isMortal(Y), motherOf(eve,y).
It will then expand isMortal (Y) into
hence won't appear in our motherof database.
Let's trace the query.
It doesn't match

```
isMortal(eve).
We next try
isMortal(clarkKent) :isMortal(Y), motherOf(clarkKent, \(\mathbf{Y}\) ).
```

We try $\mathbf{Y}=$ eve, but eve isn't Clark's mother. So we recurse, getting:
isMortal(Z), motherOf(y,z), motherOf (clarkKent, Y).
But eve isn't Clark's grandmother either! So we keep going further back, trying to find a chain of descendents that leads from eve to clarkKent. No such chain exists, and there is no limit to how long a chain Prolog will try.

There is a solution though!
We simply rewrite our recursive definition to be

```
isMortal(X) :-
    motherOf(X,Y),isMortal(Y).
```

This is logically the same, but now we work from the individual x back toward eve, rather than from eve toward x. Since we have no motherof relation involving clarkKent, we immediately stop our search and answer no!

The Cut

The most commonly used extralogical feature of Prolog is the "cut symbol," "!"
A! in a goal, fact or rule "cuts off" backtracking.
In particular, once a ! is reached (and automatically matched), we may not backtrack across it. The rule we've selected and the bindings we've already selected are "locked in" or "frozen."
For example, given
$x(A):-y(A, B), z(B), \quad!\quad v(B, C)$. once the ! is hit we can't backtrack to resatisfy $\mathbf{y}(\mathbf{A}, \mathbf{B})$ or $z(B)$ in some other way. We are locked into this rule, with the bindings of A and B already in place.

Extra-loqical Aspects of Prolog

To make a Prolog program more efficient, or to represent negative information, Prolog needs features that have a procedural flavor. These constructs are called "extra-logical" because they go beyond Prolog's core of logicbased inference.

We can backtrack to try various solutions to $v(B, C)$.
It is sometimes useful to have several !'s in a rule. This allows us to find a partial solution, lock it in, find a further solution, then lock it in, etc.
For example, in a rule
$\mathrm{a}(\mathrm{X})-\mathrm{b}(\mathrm{X}), \mathrm{t}, \mathrm{c}(\mathrm{X}, \mathrm{y}), \mathrm{l}, \mathrm{d}(\mathrm{Y})$. we first try to satisfy $\mathbf{b}(\mathrm{x})$, perhaps trying several facts or rules that define the b relation. Once we have a solution to $b(x)$, we lock it in, along with the binding for \mathbf{x}.
Then we try to satisfy $\mathbf{c}(\mathbf{x}, \mathbf{y})$, using the fixed binding for \mathbf{x}, but perhaps trying several bindings for \mathbf{Y} until $\mathbf{c}(\mathbf{X}, \mathbf{Y})$ is satisfied.
We then lock in this match using another !.

Finally we check if $d(y)$ can be satisfied with the binding of \mathbf{Y} already selected and locked in.

But clearly there is never any point in trying to resatisfy member(X, list2). Once we know a value of x is in list2, we test it using isPrime (x). If it fails, we want to go right back to member ($\mathrm{X}, \mathrm{list} 1$) and get a different \mathbf{x}.
To create a version of member that never backtracks once it has been satisfied we can use !.
We define
member1(x, [x|_]) :- !.
member $1(\mathrm{X},[\mathrm{C} \mid \mathrm{Y}])$:-
member1 (x, y).
Our query is now
member (x, li ist1),
member1(X, list2), isPrime(X).
(Why isn't member1 used in both terms?)

When are Cuts Needed?

A cut can be useful in improving efficiency, by forcing Prolog to avoid useless or redundant searches.
Consider a query like
member(x,list1),
member(X, list2), isPrime(X).
This asks Prolog to find an \mathbf{x} that is in list1 and also in list2 and also is prime.
\mathbf{x} will be bound, in sequence, to each value in list1. We then check if \mathbf{x} is also in list2, and then check if \mathbf{x} is prime.
Assume we find $\mathrm{x}=8$ is in list1 and list2. isPrime (8) fails (of course). We backtrack to member (X, list2) and resatisfy it with the same value of \mathbf{x}.

Expressing Neqative Information

Sometimes it is useful to state rules about what can't be true. This allows us to avoid long and fruitless searches.
fail is a goal that always fails. It can be used to represent goals or results that can never be true.
Assume we want to optimize our grandMotherof rules by stating that a male can never be anyone's grandmother (and hence a complete search of all motherof and fatherof relations is useless).
A rule to do this is
grandMotherOf (X,GM) :male(GM), fail.

This rule doesn't do quite what we hope it will!
Why?
The standard approach in Prolog is to try other rules if the current rule fails.
Hence we need some way to "cut off" any further backtracking once this negative rule is found to be applicable.
This can be done using

```
grandMotherOf(X,GM) :-
```

 male(GM),!, fail.
 - var and nonvar
$\operatorname{var}(\mathrm{X})$ tests whether \mathbf{x} is unbound (free).
nonvar(\mathbf{Y}) tests whether \mathbf{Y} is bound (no longer free).
These two operators are useful in tailoring rules to particular combinations of bound and unbound variables. For example, grandMotherOf(X,GM) :male(GM),!, fail.
might backfire if GM is not yet bound. We could set GM to a person for whom male (GM) is true, then fail because we don't want grandmothers who are male! To remedy this problem. we use the rule only when GM is bound.
Our rule becomes

```
grandMotherOf(X,GM) :-
    nonvar(GM), male(GM),!, fail.
```


Other Extra-Logical Operators

- assert and retract

These operators allow a Prolog program to add new rules during execution and (perhaps) later remove them. This allows programs to learn as they execute.
-findall
Called as findall(x, goal, List) where \mathbf{x} is a variable in goal. All possible solutions for \mathbf{x} that satisfy goal are found and placed in List.
For example,
findall(x,
(append (_, $\left.\left.\left[\left.x\right|_{-}\right],[-1,2,-3,4]\right),(x<0)\right)$, L).
$\mathrm{L}=[-1,-3]$

An Example of Extra-Logical Programming

Factorial is a very common example program. It's well known, and easy to code in most languages.
In Prolog the "obvious" solution is:
fact ($\mathrm{N}, 1$) :- $\mathrm{N}=<1$.
fact($N, F):-N>1, M$ is $N-1$, fact (M,G), F is N^{*}.
This definition is certainly correct.
It mimics the usual recursive solution.
But,
in Prolog "inputs" and "outputs" are less distinct than in most languages.
In fact, we can envision 4 different combinations of inputs
and outputs, based on what is fixed (and thus an input) and what is free (and hence is to be computed):

1. \mathbf{N} and \mathbf{F} are both ground (fixed). We simply must decide if $\mathrm{F}=\mathrm{N}$!
2. \mathbf{N} is ground and \mathbf{F} is free. This is how fact is usually used. We must compute an F such that $\mathrm{F}=\mathrm{N}$!
3. \mathbf{F} is fixed and \mathbf{N} is free. This is an uncommon usage. We must find an N such that $\mathrm{F}=\mathrm{N}$!, or determine that no such \mathbf{N} is possible.
4. Both \mathbf{N} and \mathbf{F} are free. We generate, in sequence, pairs of \mathbf{N} and F values such that $F=N$!

The third rule handles the case of $\mathbf{N}>1$. The value of \mathbf{F} is computed recursively. The first ! in each of these rules forces that rule to be the only one used for the values of \mathbf{N} that match. Moreover, the second ! in the third rule states that after \mathbf{F} is computed, further backtracking is useless; there is only one \mathbf{F} value for any given \mathbf{N} value.
To handle the case where \mathbf{F} is bound and \mathbf{N} is free, we use
fact (N, F) : :- nonvar(F), !, fact $(M, G), N$ is $M+1, F 2$ is $N * G$,

In this rule we generate $\mathbf{N}, \mathbf{F} 2$ pairs until $\mathbf{F 2}>=\mathrm{F}$. Then we check if $\mathbf{F = F 2}$. If this is so, we have the \mathbf{N} we want. Otherwise, no such w can exist and we fail (and answer no).

Our solution works for combinations 1 and 2 (where \mathbf{N} is fixed), but not combinations 3 and 4. (The problem is that $\mathbf{N}=<$ 1 and $\mathbf{N}>1$ can't be satisfied when \mathbf{N} is free).
We'll need to use nonvar and ! to form a solution that works for all 4 combinations of inputs.
We first handle the case where \mathbf{N} is ground:

```
fact(1,1).
```

fact ($\mathrm{N}, 1$) : - nonvar(N$), \mathrm{N}=<1$, !
fact (N, F) : :
M is $\mathrm{N}-1$, $\operatorname{fact}(\mathrm{M}, \mathrm{G}), \mathrm{F}$ is $\mathrm{N}^{*} \mathrm{G}$, ! .
The first rule handles the base case of $\mathrm{N}=1$.
The second rule handles the case of $\mathbf{N}<1$.

For the case where both \mathbf{N} and \mathbf{F} are free we use:
fact($N, F)$:- fact (M, G), N is $M+1$, F is N^{*} G.
This systematically generates \mathbf{N}, \mathbf{F} pairs, starting with $\mathbf{N}=2, \mathbf{F}=2$ and then recursively building successor values ($\mathbf{N}=\mathbf{3}, \mathbf{F}=6$, then $\mathbf{N}=\mathbf{4}, \mathbf{F}=24$, etc.)

Parallelism in Prolog

One reason that Prolog is of interest to computer scientists is that its search mechanism lends itself to parallel evaluation.
In fact, it supports two different kinds of parallelism:

- AND Parallelism
- OR Parallelism

An example of this sort of and parallelism is

```
member(x,list1),
    member1(X,list2), isPrime(X).
```

Here we can let member (x, li ist1) select an \mathbf{x} value, then test
member1 ($\mathrm{X}, 1 \mathrm{list2)}$ and isPrime (x) in parallel. If one or the other fails, we just select another \mathbf{x} from list1 and retest member1($\mathrm{X}, 1 \mathrm{list2}$) and isPrime(X) in parallel.

And Parallelism

When we have a goal that contains subgoals connected by the "," (And) operator, we may be able to utilize "and parallelism."
Rather than solve subgoals in sequence, we may be able to solve them in parallel if bindings can be properly propagated.
Thus in

$$
a(X), b(X, Y), c(X, Z), d(Y, Z) .
$$

we may be able to first solve $a(x)$, binding x, then solve $\mathbf{b}(\mathbf{x}, \mathbf{y})$ and $\mathbf{c}(\mathbf{x}, \mathbf{z})$ in parallel, binding \mathbf{Y} and \mathbf{z}, then finally solve $\mathrm{d}(\mathrm{Y}, \mathrm{Z})$.

OR Parallelism

When we match a goal we almost always have a choice of several rules or facts that may be applicable. Rather than try them in sequence, we can try several matches of different facts or rules in parallel. This is "or parallelism."
Thus given

$$
\begin{aligned}
& a(X):-b(X) . \\
& a(Y):-c(Y) .
\end{aligned}
$$

when we try to solve
a(10).
we can simultaneously check both
b(10) and c(10).

Recall our definition of
member (X, L) :append ($P,[x \mid S], L)$.
where append is defined as
append ([],L,L).
append ([X|L1],L2, [X|L3]) :append (L1, L2, L3) .
Assume we have the query
| ? member (2, [1, 2, 3]).
This immediately simplifies to append (P, [2|S], [1, 2, 3]). Now there are two append definitions we can try in parallel:
(1) match append ($\mathrm{P},[2 \mid \mathrm{s}],[1,2,3]$) with append ([], L, L). This requires that $[2 \mid s]=[1,2,3]$, which must fail.
(2) match
append($P,[2 \mid S],[1,2,3])$ with append ([X|L1],L2, [X,L3]).

Speculative Parallelism

Prolog also lends itself nicely to speculative parallelism. In this form of parallelism, we "guess" or speculate that some computation may be needed in the future and start it early. This speculative computation can often be done in parallel with the main (nonspeculative) computation.
Recall our example of
member(x,list1), member1($\mathrm{X}, \mathrm{list2}$), isPrime(X$)$.
After member(X,list1) has generated a preliminary solution for \mathbf{x}, it is tested (perhaps in parallel) by member1 (x, list2) and isprime(X).
But this value of \mathbf{x} may be rejected by one or both of these

This requires that $P=[x \mid L 1]$, $[2 \mid S]=L 2,[1,2,3]=[x, L 3]$.
Simplifying, we require that $x=1$, $\mathrm{P}=[1 \mid \mathrm{L} 1], \mathrm{L} 3=[2,3]$.
Moreover we must solve append(L1,L2,L3) which simplifies to append (L1, [2|S], [2,3]).
We can match this call to append in two different ways, so or parallelism can be used again.
When we try matching
append (L1, [2|S], [2,3]) against append ([],L,L) we get $[2 \mid S]=[2,3]$, which is satisfiable if s is bound to [3]. We therefore signal back that the query is true.
tests. If it is, we'll ask
member (X, li ist1) to find a new binding for \mathbf{x}. If we wish, this next binding can be generated speculatively, while the current value of \mathbf{x} is being tested. In this way if the current value of \mathbf{x} is rejected, we'll have a new value ready to try (or know that no other binding of \mathbf{x} is possible). If the current value of \mathbf{x} is accepted, the extra speculative work we did is ignored. It wasn't needed, but was useful insurance in case further \mathbf{x} bindings were needed.

