
448CS 538 Spring 2008©

Arithmetic Terms are Symbolic
Evaluation of an arithmetic term
into a numeric value must be
forced.
That is, 1+2 is an infix
representation of the relation
+(1,2). This term is not an
integer!
Therefore
| ?- 1+2=3.
no

To force arithmetic evaluation, we
use the infix predicate is.
The right-hand side of is must be
all ground terms (literals or
variables that are already bound).
No free (unbound) variables are
allowed.

449CS 538 Spring 2008©

Hence
|?- 2 is 1+1.
yes

| ?- X is 3*4.
X = 12

| ?- Y is Z+1.
! Instantiation error in argument
2 of is/2
! goal: _10712 is _10715+1

The requirement that the right-
hand side of an is relation be
ground is essentially procedural.
It exists to avoid having to invert
complex equations. Consider,

(0 is (I**N)+(J**N)-K**N)), N>2.

450CS 538 Spring 2008©

Counting in Prolog
Rules that involve counting often
use the is predicate to evaluate a
numeric value.
Consider the relation len(L,N)
that is true if the length of list L is
N.
len([],0).

len([_|T],N) :-
 len(T,M), N is M+1.

| ?- len([1,2,3],X).

X = 3

| ?- len(Y,2).

Y = [_10903,_10905]

The symbols _10903 and _10905
are “internal variables” created as
needed when a particular value is
not forced in a solution.

451CS 538 Spring 2008©

Debugging Prolog
Care is required in developing and
testing Prolog programs because
the language is untyped;
undeclared predicates or relations
are simply treated as false.
Thus in a definition like
 adj([A,B|_]) :- A=B.

 adj([_,B|T]) :- adk([B|T]).

| ?- adj([1,2,2]).
no

(Some Prolog systems warn when
an undefined relation is
referenced, but many others
don’t).

452CS 538 Spring 2008©

Similarly, given
member(A,[A|_]).

 member(A,[_|T]) :-
 member(A,[T]).

| ?- member(2,[1,2]).

Infinite recursion! (Why?)

If you’re not sure what is going
on, Prolog’s trace feature is very
handy.
The command
trace.

turns on tracing. (notrace turns
tracing off).
Hence
| ?- trace.
yes

[trace]

| ?- member(2,[1,2]).

453CS 538 Spring 2008©

(1) 0 Call: member(2,[1,2]) ?

 (1) 1 Head [1->2]:
member(2,[1,2]) ?

 (1) 1 Head [2]:
member(2,[1,2]) ?

(2) 1 Call: member(2,[[2]]) ?

 (2) 2 Head [1->2]:
member(2,[[2]]) ?

 (2) 2 Head [2]:
member(2,[[2]]) ?

 (3) 2 Call: member(2,[[]]) ?

 (3) 3 Head [1->2]:
member(2,[[]]) ?

(3) 3 Head [2]: member(2,[[]])
?

 (4) 3 Call: member(2,[[]]) ?

 (4) 4 Head [1->2]:
member(2,[[]]) ?

(4) 4 Head [2]: member(2,[[]])
?

 (5) 4 Call: member(2,[[]]) ?

454CS 538 Spring 2008©

Termination Issues in Prolog
Searching infinite domains (like
integers) can lead to non-
termination, with Prolog trying
every value.
Consider
odd(1).

odd(N) :- odd(M), N is M+2.

| ?- odd(X).

X = 1 ;

X = 3 ;

X = 5 ;
X = 7

455CS 538 Spring 2008©

A query
 | ?- odd(X), X=2.
going into an infinite search,
generating each and every odd
integer and finding none is equal
to 2!
The obvious alternative,
odd(2) (which is equivalent to
X=2, odd(X)) also does an
infinite, but fruitless search.
We’ll soon learn that Prolog does
have a mechanism to “cut off”
fruitless searches.

456CS 538 Spring 2008©

Definition Order can Matter
Ideally, the order of definition of
facts and rules should not matter.
But,
in practice definition order can
matter. A good general guideline
is to define facts before rules. To
see why, consider a very complete
database of motherOf relations
that goes back as far as
motherOf(cain,eve).

Now we define
isMortal(X) :-
 isMortal(Y), motherOf(X,Y).

isMortal(eve).

457CS 538 Spring 2008©

These definitions state that the
first woman was mortal, and all
individuals descended from her
are also mortal.
But when we try as trivial a query
as
| ?- isMortal(eve).

we go into an infinite search!
Why?
Let’s trace what Prolog does when
it sees
| ?- isMortal(eve).
It matches with the first definition
involving isMortal, which is
isMortal(X) :-
 isMortal(Y), motherOf(X,Y).

It sets X=eve and tries to solve
isMortal(Y), motherOf(eve,Y).

It will then expand isMortal(Y)
into

458CS 538 Spring 2008©

isMortal(Z), motherOf(Y,Z).

An infinite expansion ensues.
The solution is simple—place the
“base case” fact that terminates
recursion first.
If we use
isMortal(eve).

isMortal(X) :-
 isMortal(Y), motherOf(X,Y).
yes

| ?- isMortal(eve).

yes

But now another problem appears!
If we ask
| ?- isMortal(clarkKent).

we go into another infinite search!
Why?
The problem is that Clark Kent is
from the planet Krypton, and

459CS 538 Spring 2008©

hence won’t appear in our
motherOf database.
Let’s trace the query.
It doesn’t match
isMortal(eve).
We next try
isMortal(clarkKent) :-
 isMortal(Y),
 motherOf(clarkKent,Y).

We try Y=eve, but eve isn’t Clark’s
mother. So we recurse, getting:
isMortal(Z), motherOf(Y,Z),
motherOf(clarkKent,Y).

But eve isn’t Clark’s grandmother
either! So we keep going further
back, trying to find a chain of
descendents that leads from eve
to clarkKent. No such chain
exists, and there is no limit to
how long a chain Prolog will try.

460CS 538 Spring 2008©

There is a solution though!
We simply rewrite our recursive
definition to be
 isMortal(X) :-
 motherOf(X,Y),isMortal(Y).

This is logically the same, but
now we work from the individual
X back toward eve, rather than
from eve toward X. Since we have
no motherOf relation involving
clarkKent, we immediately stop
our search and answer no!

461CS 538 Spring 2008©

Extra-logical Aspects of
Prolog

To make a Prolog program more
efficient, or to represent negative
information, Prolog needs
features that have a procedural
flavor. These constructs are called
“extra-logical” because they go
beyond Prolog’s core of logic-
based inference.

462CS 538 Spring 2008©

The Cut
The most commonly used extra-
logical feature of Prolog is the “cut
symbol,” “!”
A ! in a goal, fact or rule “cuts off”
backtracking.
In particular, once a ! is reached
(and automatically matched), we
may not backtrack across it. The
rule we’ve selected and the
bindings we’ve already selected
are “locked in” or “frozen.”
For example, given
x(A) :- y(A,B), z(B), ! , v(B,C).

once the ! is hit we can’t
backtrack to resatisfy y(A,B) or
z(B) in some other way. We are
locked into this rule, with the
bindings of A and B already in
place.

463CS 538 Spring 2008©

We can backtrack to try various
solutions to v(B,C).
It is sometimes useful to have
several !’s in a rule. This allows us
to find a partial solution, lock it
in, find a further solution, then
lock it in, etc.
For example, in a rule
a(X) - b(X), !, c(X,Y), ! , d(Y).

we first try to satisfy b(X),
perhaps trying several facts or
rules that define the b relation.
Once we have a solution to b(X),
we lock it in, along with the
binding for X.
Then we try to satisfy c(X,Y),
using the fixed binding for X, but
perhaps trying several bindings
for Y until c(X,Y) is satisfied.
We then lock in this match using
another !.

464CS 538 Spring 2008©

Finally we check if d(Y) can be
satisfied with the binding of Y
already selected and locked in.

465CS 538 Spring 2008©

When are Cuts Needed?
A cut can be useful in improving
efficiency, by forcing Prolog to
avoid useless or redundant
searches.
Consider a query like
member(X,list1),
member(X,list2), isPrime(X).

This asks Prolog to find an X that
is in list1 and also in list2 and
also is prime.
X will be bound, in sequence, to
each value in list1. We then
check if X is also in list2, and
then check if X is prime.
Assume we find X=8 is in list1
and list2. isPrime(8) fails (of
course). We backtrack to
member(X,list2) and resatisfy it
with the same value of X.

466CS 538 Spring 2008©

But clearly there is never any
point in trying to resatisfy
member(X,list2). Once we
know a value of X is in list2, we
test it using isPrime(X). If it
fails, we want to go right back to
member(X,list1) and get a
different X.
To create a version of member
that never backtracks once it has
been satisfied we can use !.
We define
member1(X,[X|_]) :- !.
member1(X,[_|Y]) :-
 member1(X,Y).

Our query is now
member(X,list1),
 member1(X,list2), isPrime(X).

(Why isn’t member1 used in both
terms?)

467CS 538 Spring 2008©

Expressing Negative
Information

Sometimes it is useful to state
rules about what can’t be true.
This allows us to avoid long and
fruitless searches.
fail is a goal that always fails. It
can be used to represent goals or
results that can never be true.
Assume we want to optimize our
grandMotherOf rules by stating
that a male can never be anyone’s
grandmother (and hence a
complete search of all motherOf
and fatherOf relations is
useless).
A rule to do this is
grandMotherOf(X,GM) :-
 male(GM), fail.

468CS 538 Spring 2008©

This rule doesn’t do quite what
we hope it will!
Why?
The standard approach in Prolog
is to try other rules if the current
rule fails.
Hence we need some way to “cut
off” any further backtracking once
this negative rule is found to be
applicable.
This can be done using
 grandMotherOf(X,GM) :-
 male(GM),!, fail.

469CS 538 Spring 2008©

Other Extra-Logical
Operators

• assert and retract

These operators allow a Prolog
program to add new rules during
execution and (perhaps) later
remove them. This allows
programs to learn as they
execute.
•findall

Called as findall(X,goal,List)
where X is a variable in goal. All
possible solutions for X that
satisfy goal are found and placed
in List.
For example,
findall(X,
(append(_,[X|_],[-1,2,-3,4]),(X<0)), L).

L = [-1,-3]

470CS 538 Spring 2008©

• var and nonvar

var(X) tests whether X is
unbound (free).
nonvar(Y) tests whether Y is

bound (no longer free).
These two operators are useful in
tailoring rules to particular
combinations of bound and
unbound variables. For example,
grandMotherOf(X,GM) :-
 male(GM),!, fail.

might backfire if GM is not yet
bound. We could set GM to a
person for whom male(GM) is
true, then fail because we don’t
want grandmothers who are male!
To remedy this problem. we use
the rule only when GM is bound.
Our rule becomes
grandMotherOf(X,GM) :-
 nonvar(GM), male(GM),!, fail.

471CS 538 Spring 2008©

An Example of Extra-Logical
Programming

Factorial is a very common
example program. It’s well known,
and easy to code in most
languages.
In Prolog the “obvious” solution is:
fact(N,1) :- N =< 1.

fact(N,F) :- N > 1, M is N-1,
 fact(M,G), F is N*G.

This definition is certainly correct.
It mimics the usual recursive
solution.
But,
in Prolog “inputs” and “outputs”
are less distinct than in most
languages.
In fact, we can envision 4
different combinations of inputs

472CS 538 Spring 2008©

and outputs, based on what is
fixed (and thus an input) and
what is free (and hence is to be
computed):
1. N and F are both ground (fixed).

We simply must decide if F=N!
2. N is ground and F is free. This
is how fact is usually used. We
must compute an F such that F=N!
3. F is fixed and N is free. This is
an uncommon usage. We must
find an N such that F=N!, or
determine that no such N is
possible.
4. Both N and F are free. We
generate, in sequence, pairs of N
and F values such that F=N!

473CS 538 Spring 2008©

Our solution works for
combinations 1 and 2 (where N is
fixed), but not combinations 3
and 4. (The problem is that N =<
1 and N > 1 can’t be satisfied
when N is free).
We’ll need to use nonvar and ! to
form a solution that works for all
4 combinations of inputs.
We first handle the case where N
is ground:
fact(1,1).
fact(N,1) :- nonvar(N), N =< 1, ! .
fact(N,F) :- nonvar(N), N > 1, !,
M is N-1, fact(M,G), F is N*G, ! .

The first rule handles the base
case of N=1.
The second rule handles the case
of N<1.

474CS 538 Spring 2008©

The third rule handles the case of
N >1. The value of F is computed
recursively. The first ! in each of
these rules forces that rule to be
the only one used for the values
of N that match. Moreover, the
second ! in the third rule states
that after F is computed, further
backtracking is useless; there is
only one F value for any given N
value.
To handle the case where F is
bound and N is free, we use
fact(N,F) :- nonvar(F), !,
 fact(M,G), N is M+1, F2 is N*G,
 F =< F2, !, F=F2.

In this rule we generate N, F2
pairs until F2 >= F. Then we
check if F=F2. If this is so, we
have the N we want. Otherwise,
no such N can exist and we fail
(and answer no).

475CS 538 Spring 2008©

For the case where both N and F
are free we use:
fact(N,F) :- fact(M,G), N is M+1,
 F is N*G.

This systematically generates N, F
pairs, starting with N=2, F=2 and
then recursively building
successor values (N=3, F=6, then
N=4, F=24, etc.)

476CS 538 Spring 2008©

Parallelism in Prolog
One reason that Prolog is of
interest to computer scientists is
that its search mechanism lends
itself to parallel evaluation.
In fact, it supports two different
kinds of parallelism:
• AND Parallelism

• OR Parallelism

477CS 538 Spring 2008©

And Parallelism
When we have a goal that
contains subgoals connected by
the “,” (And) operator, we may be
able to utilize “and parallelism.”
Rather than solve subgoals in
sequence, we may be able to
solve them in parallel if bindings
can be properly propagated.
Thus in
a(X), b(X,Y), c(X,Z), d(Y,Z).

we may be able to first solve
a(X), binding X, then solve
b(X,Y) and c(X,Z) in parallel,
binding Y and Z, then finally solve
d(Y,Z).

478CS 538 Spring 2008©

An example of this sort of and
parallelism is
member(X,list1),
 member1(X,list2), isPrime(X).

Here we can let member(X,list1)
select an X value, then test
member1(X,list2) and
isPrime(X) in parallel. If one or
the other fails, we just select
another X from list1 and retest
member1(X,list2) and
isPrime(X) in parallel.

479CS 538 Spring 2008©

OR Parallelism
When we match a goal we almost
always have a choice of several
rules or facts that may be
applicable. Rather than try them
in sequence, we can try several
matches of different facts or rules
in parallel. This is “or parallelism.”
Thus given
 a(X) :- b(X).

 a(Y) :- c(Y).

when we try to solve
a(10).

we can simultaneously check both
b(10) and c(10).

480CS 538 Spring 2008©

Recall our definition of
member(X,L) :-
 append(P,[X|S],L).

where append is defined as
append([],L,L).

append([X|L1],L2,[X|L3]) :-
 append(L1,L2,L3).

Assume we have the query
| ? member(2,[1,2,3]).

This immediately simplifies to
append(P,[2|S],[1,2,3]).

Now there are two append
definitions we can try in parallel:
(1) match append(P,[2|S],[1,2,3])
with append([],L,L). This
requires that [2|S] = [1,2,3],
which must fail.
(2) match
append(P,[2|S],[1,2,3]) with
append([X|L1],L2,[X,L3]).

481CS 538 Spring 2008©

This requires that P=[X|L1],
[2|S]=L2, [1,2,3]=[X,L3].
Simplifying, we require that X=1,
P=[1|L1], L3=[2,3].
Moreover we must solve
append(L1,L2,L3) which
simplifies to
append(L1,[2|S],[2,3]).
We can match this call to append
in two different ways, so or
parallelism can be used again.
When we try matching
append(L1,[2|S],[2,3]) against
append([],L,L) we get
[2|S]=[2,3], which is satisfiable
if S is bound to [3]. We therefore
signal back that the query is true.

482CS 538 Spring 2008©

Speculative Parallelism
Prolog also lends itself nicely to
speculative parallelism. In this
form of parallelism, we “guess” or
speculate that some computation
may be needed in the future and
start it early. This speculative
computation can often be done in
parallel with the main (non-
speculative) computation.
Recall our example of
member(X,list1),
 member1(X,list2), isPrime(X).

After member(X,list1) has
generated a preliminary solution
for X, it is tested (perhaps in
parallel) by member1(X,list2)
and isPrime(X).
But this value of X may be
rejected by one or both of these

483CS 538 Spring 2008©

tests. If it is, we’ll ask
member(X,list1) to find a new
binding for X. If we wish, this next
binding can be generated
speculatively, while the current
value of X is being tested. In this
way if the current value of X is
rejected, we’ll have a new value
ready to try (or know that no
other binding of X is possible).
If the current value of X is
accepted, the extra speculative
work we did is ignored. It wasn’t
needed, but was useful insurance
in case further X bindings were
needed.

