
476CS 538 Spring 2008©

Parallelism in Prolog
One reason that Prolog is of
interest to computer scientists is
that its search mechanism lends
itself to parallel evaluation.
In fact, it supports two different
kinds of parallelism:
• AND Parallelism

• OR Parallelism

477CS 538 Spring 2008©

And Parallelism
When we have a goal that
contains subgoals connected by
the “,” (And) operator, we may be
able to utilize “and parallelism.”
Rather than solve subgoals in
sequence, we may be able to
solve them in parallel if bindings
can be properly propagated.
Thus in
a(X), b(X,Y), c(X,Z), d(Y,Z).

we may be able to first solve
a(X), binding X, then solve
b(X,Y) and c(X,Z) in parallel,
binding Y and Z, then finally solve
d(Y,Z).

478CS 538 Spring 2008©

An example of this sort of and
parallelism is
member(X,list1),
 member1(X,list2), isPrime(X).

Here we can let member(X,list1)
select an X value, then test
member1(X,list2) and
isPrime(X) in parallel. If one or
the other fails, we just select
another X from list1 and retest
member1(X,list2) and
isPrime(X) in parallel.

479CS 538 Spring 2008©

OR Parallelism
When we match a goal we almost
always have a choice of several
rules or facts that may be
applicable. Rather than try them
in sequence, we can try several
matches of different facts or rules
in parallel. This is “or parallelism.”
Thus given
 a(X) :- b(X).

 a(Y) :- c(Y).

when we try to solve
a(10).

we can simultaneously check both
b(10) and c(10).

480CS 538 Spring 2008©

Recall our definition of
member(X,L) :-
 append(P,[X|S],L).

where append is defined as
append([],L,L).

append([X|L1],L2,[X|L3]) :-
 append(L1,L2,L3).

Assume we have the query
| ? member(2,[1,2,3]).

This immediately simplifies to
append(P,[2|S],[1,2,3]).

Now there are two append
definitions we can try in parallel:
(1) match append(P,[2|S],[1,2,3])
with append([],L,L). This
requires that [2|S] = [1,2,3],
which must fail.
(2) match
append(P,[2|S],[1,2,3]) with
append([X|L1],L2,[X,L3]).

481CS 538 Spring 2008©

This requires that P=[X|L1],
[2|S]=L2, [1,2,3]=[X,L3].
Simplifying, we require that X=1,
P=[1|L1], L3=[2,3].
Moreover we must solve
append(L1,L2,L3) which
simplifies to
append(L1,[2|S],[2,3]).
We can match this call to append
in two different ways, so or
parallelism can be used again.
When we try matching
append(L1,[2|S],[2,3]) against
append([],L,L) we get
[2|S]=[2,3], which is satisfiable
if S is bound to [3]. We therefore
signal back that the query is true.

482CS 538 Spring 2008©

Speculative Parallelism
Prolog also lends itself nicely to
speculative parallelism. In this
form of parallelism, we “guess” or
speculate that some computation
may be needed in the future and
start it early. This speculative
computation can often be done in
parallel with the main (non-
speculative) computation.
Recall our example of
member(X,list1),
 member1(X,list2), isPrime(X).

After member(X,list1) has
generated a preliminary solution
for X, it is tested (perhaps in
parallel) by member1(X,list2)
and isPrime(X).
But this value of X may be
rejected by one or both of these

483CS 538 Spring 2008©

tests. If it is, we’ll ask
member(X,list1) to find a new
binding for X. If we wish, this next
binding can be generated
speculatively, while the current
value of X is being tested. In this
way if the current value of X is
rejected, we’ll have a new value
ready to try (or know that no
other binding of X is possible).
If the current value of X is
accepted, the extra speculative
work we did is ignored. It wasn’t
needed, but was useful insurance
in case further X bindings were
needed.

484CS 538 Spring 2008©

Reading Assignment
• Python Tutorial

(linked from class web page)

485CS 538 Spring 2008©

Python
A modern and innovative
scripting languages is Python,
developed by Guido van Rossum
in the mid-90s. Python is named
after the BBC “Monty Python”
television series.
Python blends the expressive
power and flexibility of earlier
scripting languages with the
power of object-oriented
programming languages.
It offers a lot to programmers:
• An interactive development mode

as well as an executable “batch”
mode for completed programs.

• Very reasonable execution speed.
Like Java, Python programs are
compiled. Also like Java, the
compiled code is in an intermediate

486CS 538 Spring 2008©

language for which an interpreter
is written. Like Java this insulates
Python from many of the vagaries
of the actual machines on which it
runs, giving it portability of an
equivalent level to that of Java.
Unlike Java, Python retains the
interactivity for which interpreters
are highly prized.

• Python programs require no
compilation or linking.
Nevertheless, the semi-compiled
Python program still runs much
faster than its traditionally
interpreted rivals such as the
shells, awk and perl.

• Python is freely available on almost
all platforms and operating
systems (Unix, Linux, Windows,
MacOs, etc.)

487CS 538 Spring 2008©

• Python is completely object
oriented. It comes with a full set of
objected oriented features.

• Python presents a first class object
model with first class functions and
multiple inheritance. Also included
are classes, modules, exceptions
and late (run-time) binding.

• Python allows a clean and open
program layout. Python code is less
cluttered with the syntactic “noise”
of declarations and scope
definitions. Scope in a Python
program is defined by the
indentation of the code in question.
Python thus breaks with current
language designs in that white
space has now once again acquired
significance.

488CS 538 Spring 2008©

• Like Java, Python offers automated
memory management through run-
time reference counting and
garbage collection of unreferenced
objects.

• Python can be embedded in other
products and programs as a control
language.

• Python’s interface is well exposed
and is reasonably small and simple.

• Python’s license is truly public.
Python programs can be used or
sold without copyright restrictions.

• Python is extendable. You can
dynamically load compiled Python,
Python source, or even dynamically
load new machine (object) code to
provide new features and new
facilities.

489CS 538 Spring 2008©

• Python allows low-level access to
its interpreter. It exposes its
internal plumbing to a significant
degree to allow programs to make
use of the way the plumbing
works.

• Python has a rich set of external
library services available. This
includes, network services, a GUI
API (based on tcl/Tk), Web support
for the generation of HTML and the
CGI interfaces, direct access to
databases, etc.

490CS 538 Spring 2008©

Using Python
Python may be used in either
interactive or batch mode.
In interactive mode you start up
the Python interpreter and enter
executable statements. Just
naming a variable (a trivial
expression) evaluates it and
echoes its value.
For example (>>> is the Python
interactive prompt):
>>> 1
1

>>> a=1

>>> a
1

>>> b=2.5

>>> b
2.5

491CS 538 Spring 2008©

>>> a+b
3.5

>>> print a+b
3.5

You can also incorporate Python
statements into a file and execute
them in batch mode. One way to
do this is to enter the command
python file.py

where file.py contains the
Python code you want executed.
Be careful though; in batch mode
you must use a print (or some
other output statement) to force
output to be printed. Thus
1

a=1

a

b=2.5

492CS 538 Spring 2008©

b

a+b

print a+b

when run in batch mode prints
only 3.5 (the output of the print
statement).
You can also run Python programs
as Unix shell scripts by adding the
line
#! /usr/bin/env python
to the head of your Python file.
(Since # begins Python comments,
you can also feed the same
augmented file directly to the
Python interpreter)

493CS 538 Spring 2008©

Python Command Format
In Python, individual primitive
commands and expressions must
appear on a single line.
This means that
 a = 1

 +b

does not assign 1+b to a! Rather, it
assigns 1 to a, then evaluates +b.
If you wish to span more than one
line, you must use \ to escape the
line:
a = 1 \

 +b

is equivalent to
a = 1 +b

494CS 538 Spring 2008©

Compound statements, like if
statements and while loops, can
span multiple lines, but individual
statements within an if or while
(if they are primitive) must appear
one a single line.

Why this restriction?
With it, ;’s are mostly
unnecessary!
A ; at the end of a statement is
legal but usually unnecessary, as
the end-of-line forces the
statement to end.
You can use a ; to squeeze more
than one statement onto a line, if
you wish:
a=1; b=2 ; c=3

495CS 538 Spring 2008©

Identifiers and Reserved Words
Identifiers look much the same as
in most programming languages.
They are composed of letters,
digits and underscores. Identifiers
must begin with a letter or
underscore. Case is significant. As
in C and C++, identifiers that
begin with an underscore often
have special meaning.

Python contains a fairly typical set
of reserved words:
and del for is raise
assert elif from lambda return
break else global not try
class except if or while
continue exec import pass
def finally in print

496CS 538 Spring 2008©

Numeric Types
There are four numeric types:
1. Integers, represented as a 32

bit (or longer) quantity. Digits
sequences (possibly) signed are
integer literals:
1 -123 +456

2. Long integers, of unlimited
precision. An integer literal
followed by an l or L is a long
integer literal:
12345678900000000000000L

3. Floating point values, represented
as a 64 bit floating point number.
Literals are of fixed decimal or
exponential form:
123.456 1e10 6.0231023

497CS 538 Spring 2008©

4. Complex numbers, represented as
a pair of floating point numbers.
In complex literals j or J is used
to denote the imaginary part of
the complex value:
1.0+2.0j -22.1j 10e10J+20.0

There is no character type. A
literal like 'a' or "c" denotes a
string of length one.

There is no boolean type. A zero
numeric value (any form), or None
(the equivalent of void) or an
empty string, list, tuple or
dictionary is treated as false;
other values are treated as true.
Hence
 "abc" and "def"

is treated as true in an if, since
both strings are non-empty.

498CS 538 Spring 2008©

Arithmetic Operators
Op Description
** Exponentiation
+ Unary plus
- Unary minus
~ Bit-wise complement

 (int or long only)
* Multiplication
/ Division
% Remainder
+ Binary plus
- Binary minus
<< Bit-wise left shift

(int or long only)
>> Bit-wise right shift

 (int or long only)
& Bit-wise and (int or long only)
| Bit-wise or (int or long only)
^ Bit-wise Xor (int or long only)

499CS 538 Spring 2008©

< Less than
> Greater than
>= Greater than or equal
<= Less than or equal
== Equal
!= Not equal
and Boolean and
or Boolean or
not Boolean not

500CS 538 Spring 2008©

Operator Precedence Levels
Listed from lowest to highest:
or Boolean OR
and Boolean AND
not Boolean NOT
<, <=, >, >=, <>, !=, == Comparisons
| Bitwise OR
^ Bitwise XOR
& Bitwise AND
<<, >> Shifts
+, - Addition and subtraction
*, /, % Multiplication, division,

remainder
** Exponentiation
+, - Positive, negative (unary)
~ Bitwise not

501CS 538 Spring 2008©

Arithmetic Operator Use
Arithmetic operators may be used
with any arithmetic type, with
conversions automatically
applied. Bit-wise operations are
restricted to integers and long
integers. The result type is
determined by the “generality” of
the operands. (Long is more
general than int, float is more
general than both int and long,
complex is the most general
numeric type). Thus
>>> 1+2
3

>>> 1+111L
112L

>>> 1+1.1
2.1

>>> 1+2.0j

502CS 538 Spring 2008©

(1+2j)

Unlike almost all other
programming languages,
relational operators may be
“chained” (as in standard
mathematics).
Therefore
 a > b > c

means (a > b) and (b > c)

503CS 538 Spring 2008©

Assignment Statements
In Python assignment is a
statement not an expression.
Thus
 a+(b=2)

is illegal.
Chained assignments are allowed:
a = b = 3

Since Python is dynamically
typed, the type (and value)
associated with an identifier can
change because of an
assignment:
>>> a = 0

>>> print a
0

>>> a = a + 0L

>>> print a

504CS 538 Spring 2008©

0L

>>> a = a + 0.0

>>> print a
0.0

>>> a = a + 0.0J

>>> print a
0j

505CS 538 Spring 2008©

If and While Statements
Python contains if and while
statements that are fairly similar
to those found in C and Java.
There are some significant
differences though.
A line that contains an if, else or
while ends in a “:”. Thus we
might write:
 if a > 0:

 b = 1

Moreover the indentation of the
then part is significant! You don’t
need { and } in Python because
all statements indented at the
same level are assumed to be part
of the same block.

506CS 538 Spring 2008©

In the following Python
statements
if a>0:

 b=1

 c=2

d=3

the assignments to b and c
constitute then part; the
assignment to d follows the if
statement, and is independent of
it. In interactive mode a blank line
is needed to allow the interpreter
to determine where the if
statement ends; this blank line is
not needed in batch mode.

507CS 538 Spring 2008©

The if Statement
The full form of the if statement
is
if expression:

 statement(s)

elif expression:

 statement(s)

...

else:

 statement(s)

Note those pesky :’s at the end of
the if, elif and else lines. The
expressions following the if and
optional elif lines are evaluated
until one evaluates to true. Then
the following statement(s),
delimited by indentation, are
executed. If no expression
evaluates to true, the statements
following the else are executed.

508CS 538 Spring 2008©

Use of else and elif are
optional; a “bare” if may be used.
If any of the lists of statements is
to be null, use pass to indicate
that nothing is to be done.
For example
if a>0:

 b=1

elif a < 0:

 pass

else:

 b=0

This if sets b to 1 if a is > 0; it
sets b to 0 if a == 0, and does
nothing if a < 0.

509CS 538 Spring 2008©

While Loops
Python contains a fairly
conventional while loop:
while expression:

 body

Note the “:” that ends the header
line. Also, indentation delimits the
body of the loop; no braces are
needed. For example,
>>> a=0; b=0

>>> while a < 5:

... b = b+a**2

... a= a+1

...

>>> print a,b
5 30

510CS 538 Spring 2008©

Break, Continue and Else in
Loops

Like C, C++ and Java, Python
allows use of break within a loop
to force loop termination. For
example,
>>> a=1

>>> while a < 10:

... if a+a == a**2:

... break

... else:

... a=a+1

...

>>> print a
2

511CS 538 Spring 2008©

A continue may be used to force
the next loop iteration:
>>> a=1

>>> while a < 100:

... a=a+1

... if a%2==0:

... continue

... a=3*a

...

>>> print a
105

512CS 538 Spring 2008©

Python also allows you to add an
else clause to a while (or for)
loop.
The syntax is
while expression:

 body

else:

 statement(s)

The else statements are
executed when the termination
condition becomes false, but not
when the loop is terminated with
a break. As a result, you can
readily program “search loops”
that need to handle the special
case of search failure:

513CS 538 Spring 2008©

>>> a=1

>>> while a < 1000:

... if a**2 == 3*a-1:

... print "winner: ",a

... break

... a=a+1

... else:

... print "No match"

...

No match

