
514CS 538 Spring 2008©

Sequence Types
Python includes three sequence
types: strings, tuples and lists. All
sequence types may be indexed,
using a very general indexing
system.
Strings are sequences of
characters; tuples and lists may
contain any type or combination
of types (like Scheme lists).
Strings and tuples are immutable
(their components may not be
changed). Lists are mutable, and
be updated, much like arrays.
Strings may be delimited by either
a single quote (') or a double
quote (") or even a triple quote
(''' or """). A given string must
start and stop with the same
delimiter. Triply quoted strings
may span multiple lines. There is

515CS 538 Spring 2008©

no character type or value;
characters are simply strings of
length 1. Legal strings include
'abc' "xyz" '''It's OK!'''

Lists are delimited by “[“ and “]”.
Empty (or null lists) are allowed.
Valid list literals include
 [1,2,3] ["one",1]
 [['a'],['b'],['c']] []

Tuples are a sequence of values
separated by commas. A tuple
may be enclosed within
parentheses, but this isn’t
required. A empty tuple is (). A
singleton tuple ends with a
comma (to distinguish it from a
simple scalar value).
Thus (1,) or just 1, is a valid
tuple of length one.

516CS 538 Spring 2008©

Indexing Sequence Types
Python provides a very general
and powerful indexing
mechanism. An index is enclosed
in brackets, just like a subscript in
C or Java. Indexing starts at 0.
Thus we may have
>>> 'abcde'[2]
'c'

>>> [1,2,3,4,5][1]
2

>>> (1.1,2.2,3.3)[0]
1.1

Using an index that’s too big
raises an IndexError exception:
>>> 'abc'[3]
IndexError: string index out of
range

517CS 538 Spring 2008©

Unlike most languages, you can
use negative index values; these
simply index from the right:
>>> 'abc'[-1]
'c'

>>> [5,4,3,2,1][-2]
2

>>> (1,2,3,4)[-4]
1

You may also access a slice of a
sequence value by supplying a
range of index values. The
notation is
data[i:j]

which selects the values in data
that are >=i and < j. Thus
>>> 'abcde'[1:2]
'b'

>>> 'abcde'[0:3]
'abc'

518CS 538 Spring 2008©

>>> 'abcde'[2:2]
''

You may omit a lower or upper
bound on a range. A missing
lower bound defaults to 0 and a
missing upper bound defaults to
the maximum legal index. For
example,
>>> [1,2,3,4,5][2:]
[3, 4, 5]

>>> [1,2,3,4,5][:3]
[1, 2, 3]

An upper bound that’s too large in
a range is interpreted as the
maximum legal index:
>>> 'abcdef'[3:100]
'def'

You may use negative values in
ranges too—they’re interpreted as
being relative to the right end of
the sequence:

519CS 538 Spring 2008©

>>> 'abcde'[0:-2]
'abc'

>>> 'abcdefg'[-5:-2]
'cde'

>>> 'abcde'[-3:]
'cde'

>>> 'abcde'[:-1]
'abcd'

Since arrays may be assigned to,
you may assign a slice to change
several values at once:
>>> a=[1,2,3,4]

>>> a[0:2]=[-1,-2]

>>> a
[-1, -2, 3, 4]

>>> a[2:]=[33,44]

>>> a
[-1, -2, 33, 44]

520CS 538 Spring 2008©

The length of the value assigned
to a slice need not be the same
size as the slice itself, so you can
shrink or expand a list by
assigning slices:
>>> a=[1,2,3,4,5]

>>> a[2:3]=[3.1,3.2]

>>> a
[1, 2, 3.1, 3.2, 4, 5]

>>> a[4:]=[]

>>> a
[1, 2, 3.1, 3.2]

>>> a[:0]=[-3,-2,-1]

>>> a
[-3, -2, -1, 1, 2, 3.1, 3.2]

521CS 538 Spring 2008©

Other Operations on
Sequences

Besides indexing and slicing, a
number of other useful operations
are provided for sequence types
(strings, lists and tuples).
These include:

+ (catenation):
>>> [1,2,3]+[4,5,6]
[1, 2, 3, 4, 5, 6]

>>> (1,2,3)+(4,5)
(1, 2, 3, 4, 5)

>>> (1,2,3)+[4,5]
TypeError: illegal argument
type for built-in operation

>>> "abc"+"def"
'abcdef'

522CS 538 Spring 2008©

• * (Repetition):
>>> 'abc'*2
'abcabc'

>>> [3,4,5]*3
[3, 4, 5, 3, 4, 5, 3, 4, 5]

• Membership (in, not in)
>>> 3 in [1,2,3,4]
1

>>> 'c' in 'abcde'
1

• max and min:
>>> max([3,8,-9,22,4])
22

>>> min('aa','bb','abc')
'aa'

523CS 538 Spring 2008©

Operations on Lists
As well as the operations
available for all sequence types
(including lists), there are many
other useful operations available
for lists. These include:
• count (Count occurrences of an

item in a list):
>>> [1,2,3,3,21].count(3)
2

• index (Find first occurrence of an
item in a list):
>>> [1,2,3,3,21].index(3)
2

>>> [1,2,3,3,21].index(17)
ValueError: list.index(x): x
not in list

524CS 538 Spring 2008©

• remove (Find and remove an item
from a list):
>>> a=[1,2,3,4,5]
>>> a.remove(4)
>>> a
[1, 2, 3, 5]

>>> a.remove(17)
ValueError: list.remove(x): x
not in list

• pop (Fetch and remove i-th element
of a list):
>>> a=[1,2,3,4,5]
>>> a.pop(3)
4

>>> a
[1, 2, 3, 5]

>>> a.pop()
5

>>> a
[1, 2, 3]

525CS 538 Spring 2008©

• reverse a list:
>>> a=[1,2,3,4,5]
>>> a.reverse()
>>> a
[5, 4, 3, 2, 1]

• sort a list:
>>> a=[5,1,4,2,3]
>>> a.sort()
>>> a
[1, 2, 3, 4, 5]

• Create a range of values:
>>> range(1,5)
[1, 2, 3, 4]

>>> range(1,10,2)
[1, 3, 5, 7, 9]

>>> range(10,1,-2)
[10, 8, 6, 4, 2]

526CS 538 Spring 2008©

Dictionaries
Python also provides a dictionary
type (sometimes called an
associative array). In a dictionary
you can use a number (including a
float or complex), string or tuple
as an index. In fact any
immutable type can be an index
(this excludes lists and
dictionaries).
An empty dictionary is denoted
{ }.
A non-empty dictionary may be
written as
{ key1:value1, key2:value2, ... }

For example,
c={ 'bmw':650, 'lexus':'LS 460',
 'mercedes':'S 550'}

527CS 538 Spring 2008©

You can use a dictionary much
like an array, indexing it using
keys, and updating it by
assigning a new value to a key:
>>> c['bmw']
650

>>> c['bmw']='M6'

>>> c['honda']='accord'

You can delete a value using
del:
>>> del c['honda']
>>> c['honda']

KeyError: honda

528CS 538 Spring 2008©

You can also check to see if a
given key is valid, and also list
all keys, values, or key-value
pairs in use:
>>> c.has_key('edsel')
0

>>> c.keys()
['bmw', 'mercedes', 'lexus']

>>> c.values()
['M6', 'S 550', 'LS 460']

>>> c.items()
[('bmw', 'M6'), ('mercedes',
 'S 550'), ('lexus', 'LS 460')]

529CS 538 Spring 2008©

For Loops
In Python’s for loops, you don’t
explicitly control the steps of an
iteration. Instead, you provide a
sequence type (a string, list or
sequence), and Python
automatically steps through the
values.
Like a while loop, you must end
the for loop header with a “:” and
the body is delimited using
indentation. For example,
>>> for c in 'abc':

... print c

...

a

b

c

530CS 538 Spring 2008©

The range function, which
creates a list of values in a fixed
range is useful in for loops:
>>> a=[5,2,1,4]

>>> for i in range(0,len(a)):

... a[i]=2*a[i]

...

>>> print a
[10, 4, 2, 8]

531CS 538 Spring 2008©

You can use an else with for
loops too. Once the values in the
specified sequence are exhausted,
the else is executed unless the
for is exited using a break. For
example,
 for i in a:

 if i < 0:

 print 'Neg val:',i

 break

 else:

 print 'No neg vals'

532CS 538 Spring 2008©

Sets
Lists are often used to represent
sets, and Python allows a list (or
string or tuple) to be converted to
a set using the set function:
>>> set([1,2,3,1])
set([1, 2, 3])

>>> set("abac")
set([’a’, ’c’, ’b’])

>>> set((1,2,3,2,1))
set([1, 2, 3])

Sets (of course) disallow duplicate
elements. They are unordered
(and thus can’t be indexed), but
they can be iterated through
using a for:
>>> for v in set([1,1,2,2,3,4,2,1]):

... print v,

1 2 3 4

533CS 538 Spring 2008©

The usual set operators are
provided:

Union (|),
Intersection (&),
Difference (-)
and Symmetric Difference
 (^, select members in either but

not both operands)
>>> set([1,2,3]) | set([3,4,5])
set([1, 2, 3, 4, 5])
>>> set([1,2,3]) & set([3,4,5])
set([3])
>>> set([1,2,3]) - set([3,4,5])
set([1, 2])
>>> set([1,2,3]) ^ set([3,4,5])
set([1, 2, 4, 5])

534CS 538 Spring 2008©

List Comprehensions
Python provides an elegant
mechanism for building a list by
embedding a for within list
brackets. This a termed a List
Comprehension.
The general form is an
expression, followed by a for to
generate values, optionally
followed by ifs (to select or reject
values) of additional fors.
In essence this is a procedural
version of a map, without the need
to actually provide a function to
be mapped.

To begin with a simple example,
>>> [2*i for i in [1,2,3]]
[2, 4, 6]

535CS 538 Spring 2008©

This is the same as mapping the
doubling function on the list
[1,2,3], but without an explicit
function.
With an if to filter values, we
might have:
>>> [2*i for i in [3,2,1,0,-1] if i != 0]

[6, 4, 2, -2]

We can also (in effect) nest for’s:
[(x,y) for x in [1,2,3] for y in [-1,0]]

[(1, -1), (1, 0), (2, -1), (2, 0),
 (3, -1), (3, 0)]

536CS 538 Spring 2008©

Function Definitions
Function definitions are of the
form
def name(args):

 body

The symbol def tells Python that
a function is to be defined. The
function is called name and args
is a tuple defining the names of
the function’s arguments. The
body of the function is delimited
using indentation. For example,
def fact(n):

 if n<=1:

 return 1

 else:

 return n*fact(n-1)

>>> fact(5)
120

>>> fact(20L)

537CS 538 Spring 2008©

2432902008176640000L

>>> fact(2.5)
3.75

>>> fact(2+1J)
(1+3j)

Scalar parameters are passed by
value; mutable objects are
allocated in the heap and hence
are passed (in effect) by reference:
>>> def asg(ar):

... a[1]=0

... print ar

...

>>> a=[1,2,3,4.5]

>>> asg(a)
[1, 0, 3, 4.5]

538CS 538 Spring 2008©

Arguments may be given a default
value, making them optional in a
call. Optional parameters must
follow required parameters in
definitions. For example,
 >>> def expo(val,exp=2):

... return val**exp

...

>>> expo(3,3)
27

>>> expo(3)
9

>>> expo()
TypeError: not enough arguments;
expected 1, got 0

539CS 538 Spring 2008©

A variable number of arguments
is allowed; you prefix the last
formal parameter with a *; this
parameter is bound to a tuple
containing all the actual
parameters provided by the caller:
>>> def sum(*args):
... sum=0
... for i in args:
... sum=sum+i
... return sum
...

>>> sum(1,2,3)
6

>>> sum(2)
2

>>> sum()
0

540CS 538 Spring 2008©

You may also use the name of
formal parameters in a call,
making the order of parameters
less important:
>>> def cat(left="[",body="",

 right="]"):

... return left+body+right

...

>>> cat(body='xyz');
'[xyz]'

>>> cat(body='hi there!'
 ,left='--[')
'--[hi there!]'

541CS 538 Spring 2008©

Scoping Rules in Functions
Each function body has its own
local namespace during
execution. An identifier is
resolved (if possible) in the local
namespace, then (if necessary) in
the global namespace.
Thus
>>> def f():

... a=11

... return a+b

...

>>> b=2;f()
13

>>> a=22;f()
13

>>> b=33;f()
44

542CS 538 Spring 2008©

Assignments are to local
variables, even if a global exists.
To force an assignment to refer to
a global identifier, you use the
declaration
global id

which tells Python that in this
function id should be considered
global rather than local. For
example,
>>> a=1;b=2

>>> def f():

... global a

... a=111;b=222

...

>>> f();print a,b
111 2

543CS 538 Spring 2008©

Other Operations on Functions
Since Python is interpreted, you
can dynamically create and
execute Python code.
The function eval(string)
interprets string as a Python
expression (in the current
execution environment) and
returns what is computed. For
example,
>>> a=1;b=2

>>> eval('a+b')
3

544CS 538 Spring 2008©

exec(string) executes string
as arbitrary Python code (in the
current environment):
>>> a=1;b=2

>>> exec('for op in "+-*/":
print(eval("a"+op+"b"))')
3

-1

2

0

execfile(string) executes the
contents of the file whose
pathname is specified by string.
This can be useful in loading an
existing set of Python definitions.

545CS 538 Spring 2008©

The expression
lambda args: expression

creates an anonymous function
with args as its argument list and
expression as it body. For
example,
>>> (lambda a:a+1)(2)
3

And there are definitions of map,
reduce and filter to map a
function to a list of values, to
reduce a list (using a binary
function) and to select values
from a list (using a predicate):
>>> def double(a):

... return 2*a;

...

>>> map(double,[1,2,3,4])
[2, 4, 6, 8]

546CS 538 Spring 2008©

>>> def sum(a,b):

... return a+b

...

>>> reduce(sum,[1,2,3,4,5])
15

>>> def even(a):

... return not(a%2)

...

>>> filter(even,[1,2,3,4,5])
[2, 4]

547CS 538 Spring 2008©

Generators
Many languages, including Java,
C# and Python provide iterators
to index through a collection of
values. Typically, a next function
is provided to generate the next
value and hasNext is used to test
for termination.
Python provides generators, a
variety of function (in effect a co-
routine) to easily and cleanly
generate the sequence of values
required of an iterator.
In any function a yield (rather
than a return) can provide a value
and suspend execution. When the
next value is needed (by an
invisible call to next) the function
is resumed at the point of the
yield. Further yields generate
successive values. Normal

548CS 538 Spring 2008©

termination indicates that
hasNext is no longer true.
As a very simple example, the
following function generates all
the values in a list L except the
initial value:
>>> def allButFirst(L):

... for i in L[1:]:

... yield i

>>> for j in allButFirst([1,2,3,4]):

... print j,

2 3 4

The power of generators is their
ability to create non-standard
traversals of a data structure in a
clean and compact manner.

549CS 538 Spring 2008©

As an example, assume we wish
to visit the elements of a list not
in left-to-right or right-to-left
order, but in an order that visits
even positions first, then odd
positions. That is we will first see
L[0], then L[2], then L[4], ...,
then L[1], L[3], ...
We just write a generator that
takes a list and produces the
correct visit order:
>>> def even_odd(L):
... ind = range(0,len(L),2)

... ind = ind + range(1,len(L),2)

... for i in ind:

... yield L[i]

Then we can use this generator
wherever an iterator is needed:
>>> for j in even_odd([10,11,12,13,14]):

... print j,

...
10 12 14 11 13

550CS 538 Spring 2008©

Generators work in list
comprehensions too:
>>> [j for j in even_odd([11,12,13])]

[11, 13, 12]

