
534CS 538 Spring 2008©

List Comprehensions
Python provides an elegant
mechanism for building a list by
embedding a for within list
brackets. This a termed a List
Comprehension.
The general form is an
expression, followed by a for to
generate values, optionally
followed by ifs (to select or reject
values) of additional fors.
In essence this is a procedural
version of a map, without the need
to actually provide a function to
be mapped.

To begin with a simple example,
>>> [2*i for i in [1,2,3]]
[2, 4, 6]

535CS 538 Spring 2008©

This is the same as mapping the
doubling function on the list
[1,2,3], but without an explicit
function.
With an if to filter values, we
might have:
>>> [2*i for i in [3,2,1,0,-1] if i != 0]

[6, 4, 2, -2]

We can also (in effect) nest for’s:
[(x,y) for x in [1,2,3] for y in [-1,0]]

[(1, -1), (1, 0), (2, -1), (2, 0),
 (3, -1), (3, 0)]

536CS 538 Spring 2008©

Function Definitions
Function definitions are of the
form
def name(args):

 body

The symbol def tells Python that
a function is to be defined. The
function is called name and args
is a tuple defining the names of
the function’s arguments. The
body of the function is delimited
using indentation. For example,
def fact(n):

 if n<=1:

 return 1

 else:

 return n*fact(n-1)

>>> fact(5)
120

>>> fact(20L)

537CS 538 Spring 2008©

2432902008176640000L

>>> fact(2.5)
3.75

>>> fact(2+1J)
(1+3j)

Scalar parameters are passed by
value; mutable objects are
allocated in the heap and hence
are passed (in effect) by reference:
>>> def asg(ar):

... a[1]=0

... print ar

...

>>> a=[1,2,3,4.5]

>>> asg(a)
[1, 0, 3, 4.5]

538CS 538 Spring 2008©

Arguments may be given a default
value, making them optional in a
call. Optional parameters must
follow required parameters in
definitions. For example,
 >>> def expo(val,exp=2):

... return val**exp

...

>>> expo(3,3)
27

>>> expo(3)
9

>>> expo()
TypeError: not enough arguments;
expected 1, got 0

539CS 538 Spring 2008©

A variable number of arguments
is allowed; you prefix the last
formal parameter with a *; this
parameter is bound to a tuple
containing all the actual
parameters provided by the caller:
>>> def sum(*args):
... sum=0
... for i in args:
... sum=sum+i
... return sum
...

>>> sum(1,2,3)
6

>>> sum(2)
2

>>> sum()
0

540CS 538 Spring 2008©

You may also use the name of
formal parameters in a call,
making the order of parameters
less important:
>>> def cat(left="[",body="",

 right="]"):

... return left+body+right

...

>>> cat(body='xyz');
'[xyz]'

>>> cat(body='hi there!'
 ,left='--[')
'--[hi there!]'

541CS 538 Spring 2008©

Scoping Rules in Functions
Each function body has its own
local namespace during
execution. An identifier is
resolved (if possible) in the local
namespace, then (if necessary) in
the global namespace.
Thus
>>> def f():

... a=11

... return a+b

...

>>> b=2;f()
13

>>> a=22;f()
13

>>> b=33;f()
44

542CS 538 Spring 2008©

Assignments are to local
variables, even if a global exists.
To force an assignment to refer to
a global identifier, you use the
declaration
global id

which tells Python that in this
function id should be considered
global rather than local. For
example,
>>> a=1;b=2

>>> def f():

... global a

... a=111;b=222

...

>>> f();print a,b
111 2

543CS 538 Spring 2008©

Other Operations on Functions
Since Python is interpreted, you
can dynamically create and
execute Python code.
The function eval(string)
interprets string as a Python
expression (in the current
execution environment) and
returns what is computed. For
example,
>>> a=1;b=2

>>> eval('a+b')
3

544CS 538 Spring 2008©

exec(string) executes string
as arbitrary Python code (in the
current environment):
>>> a=1;b=2

>>> exec('for op in "+-*/":
print(eval("a"+op+"b"))')
3

-1

2

0

execfile(string) executes the
contents of the file whose
pathname is specified by string.
This can be useful in loading an
existing set of Python definitions.

545CS 538 Spring 2008©

The expression
lambda args: expression

creates an anonymous function
with args as its argument list and
expression as it body. For
example,
>>> (lambda a:a+1)(2)
3

And there are definitions of map,
reduce and filter to map a
function to a list of values, to
reduce a list (using a binary
function) and to select values
from a list (using a predicate):
>>> def double(a):

... return 2*a;

...

>>> map(double,[1,2,3,4])
[2, 4, 6, 8]

546CS 538 Spring 2008©

>>> def sum(a,b):

... return a+b

...

>>> reduce(sum,[1,2,3,4,5])
15

>>> def even(a):

... return not(a%2)

...

>>> filter(even,[1,2,3,4,5])
[2, 4]

547CS 538 Spring 2008©

Generators
Many languages, including Java,
C# and Python provide iterators
to index through a collection of
values. Typically, a next function
is provided to generate the next
value and hasNext is used to test
for termination.
Python provides generators, a
variety of function (in effect a co-
routine) to easily and cleanly
generate the sequence of values
required of an iterator.
In any function a yield (rather
than a return) can provide a value
and suspend execution. When the
next value is needed (by an
invisible call to next) the function
is resumed at the point of the
yield. Further yields generate
successive values. Normal

548CS 538 Spring 2008©

termination indicates that
hasNext is no longer true.
As a very simple example, the
following function generates all
the values in a list L except the
initial value:
>>> def allButFirst(L):

... for i in L[1:]:

... yield i

>>> for j in allButFirst([1,2,3,4]):

... print j,

2 3 4

The power of generators is their
ability to create non-standard
traversals of a data structure in a
clean and compact manner.

549CS 538 Spring 2008©

As an example, assume we wish
to visit the elements of a list not
in left-to-right or right-to-left
order, but in an order that visits
even positions first, then odd
positions. That is we will first see
L[0], then L[2], then L[4], ...,
then L[1], L[3], ...
We just write a generator that
takes a list and produces the
correct visit order:
>>> def even_odd(L):
... ind = range(0,len(L),2)

... ind = ind + range(1,len(L),2)

... for i in ind:

... yield L[i]

Then we can use this generator
wherever an iterator is needed:
>>> for j in even_odd([10,11,12,13,14]):

... print j,

...
10 12 14 11 13

550CS 538 Spring 2008©

Generators work in list
comprehensions too:
>>> [j for j in even_odd([11,12,13])]

[11, 13, 12]

551CS 538 Spring 2008©

I/O in Python
The easiest way to print
information in Python is the
print statement. You supply a
list of values separated by
commas. Values are converted to
strings (using the str() function)
and printed to standard out, with
a terminating new line
automatically included. For
example,
>>> print "1+1=",1+1
1+1= 2

If you don’t want the automatic
end of line, add a comma to the
end of the print list:
>>> for i in range(1,11):

... print i,

...

1 2 3 4 5 6 7 8 9 10

552CS 538 Spring 2008©

For those who love C’s printf,
Python provides a nice formatting
capability using a printf-like
notation. The expression
format % tuple

formats a tuple of values using a
format string. The detailed
formatting rules are those of C’s
printf. Thus
>>> print "%d+%d=%d" % (10,20,10+20)

10+20=30

553CS 538 Spring 2008©

File-oriented I/O
You open a file using
open(name,mode)

which returns a “file object.”
name is a string representing the
file’s path name; mode is a string
representing the desired access
mode('r' for read, 'w' for write,
etc.).
Thus
>>> f=open("/tmp/f1","w");
>>> f
<open file '/tmp/f1', mode 'w' at
decd8>

opens a temp file for writing.
The command
 f.read(n)

reads n bytes (as a string).

554CS 538 Spring 2008©

f.read() reads the whole file into
a string. At end-of-file, f.read
returns the null string:
>>> f = open("/tmp/ttt","r")

>>> f.read(3)
'aaa'

>>> f.read(5)
' bbb '

>>> f.read()
'ccc\012ddd eee fff\012g h i\012'

>>> f.read()
''

f.readline() reads a whole line
of input, and f.readlines()
reads the whole input file into a
list of strings:
>>> f = open("/tmp/ttt","r")

>>> f.readline()
'aaa bbb ccc\012'

>>> f.readline()

555CS 538 Spring 2008©

'ddd eee fff\012'

>>> f.readline()
'g h i\012'

>>> f.readline()
''

>>> f = open("/tmp/ttt","r")

>>> f.readlines()
['aaa bbb ccc\012', 'ddd eee
fff\012', 'g h i\012']

f.write(string) writes a string
to file object f; f.close() closes
a file object:
>>> f = open("/tmp/ttt","w")

>>> f.write("abcd")

>>> f.write("%d %d"%(1,-1))

>>> f.close()

>>> f = open("/tmp/ttt","r")

>>> f.readlines()
['abcd1 -1']

556CS 538 Spring 2008©

Classes in Python
Python contains a class creation
mechanism that’s fairly similar to
what’s found in C++ or Java.
There are significant differences
though:
• All class members are public.

• Instance fields aren’t declared.
Rather, you just create fields as
needed by assignment (often in
constructors).

• There are class fields (shared by all
class instances), but there are no
class methods. That is, all methods
are instance methods.

557CS 538 Spring 2008©

• All instance methods (including
constructors) must explicitly
provide an initial parameter that
represents the object instance. This
parameter is typically called self.
It’s roughly the equivalent of this
in C++ or Java.

558CS 538 Spring 2008©

Defining Classes
You define a class by executing a
class definition of the form
class name:

 statement(s)

A class definition creates a class
object from which class instances
may be created (just like in Java).
The statements within a class
definition may be data members
(to be shared among all class
instances) as well as function
definitions (prefixed by a def
command). Each function must
take (at least) an initial parameter
that represents the class instance
within which the function
(instance method) will operate.
For example,

559CS 538 Spring 2008©

class Example:
 cnt=1
 def msg(self):
 print "Bo"+"o"*Example.cnt+

"!"*self.n

>>> Example.cnt
1

>>> Example.msg
<unbound method Example.msg>

Example.msg is unbound because
we haven’t created any instances
of the Example class yet.
We create class instances by using
the class name as a function:
>>> e=Example()

>>> e.msg()
AttributeError: n

560CS 538 Spring 2008©

We get the AttributeError
message regarding n because we
haven’t defined n yet! One way to
do this is to just assign to it,
using the usual field notation:
>>> e.n=1

>>> e.msg()
Boo!

>>> e.n=2;Example.cnt=2

>>> e.msg()
Booo!!

We can also call an instance
method by making the class
object an explicit parameter:
>>> Example.msg(e)
Booo!!

It’s nice to have data members
initialized when an object is
created. This is usually done with
a constructor, and Python allows
this too.

561CS 538 Spring 2008©

A special method named
__init__ is called whenever an
object is created. This method
takes self as its first parameter;
other parameters (possibly made
optional) are allowed.
We can therefore extend our
Example class with a constructor:
class Example:
 cnt=1
 def __init__(self,nval=1):
 self.n=nval
 def msg(self):
 print "Bo"+"o"*Example.cnt+
 "!"*self.n

>>> e=Example()

>>> e.n
1

>>> f=Example(2)

>>> f.n
2

562CS 538 Spring 2008©

You can also define the equivalent
of Java’s toString method by
defining a member function
named __str__(self).
For example, if we add
def __str__(self):

 return "<%d>"%self.n

to Example,
then we can include Example
objects in print statements:
>>> e=Example(2)

>>> print e
<2>

563CS 538 Spring 2008©

Inheritance
Like any language that supports
classes, Python allows inheritance
from a parent (or base) class. In
fact, Python allows multiple
inheritance in which a class
inherits definitions from more
than one parent.
When defining a class you specify
parents classes as follows:
class name(parent classes):

 statement(s)

The subclass has access to its
own definitions as well as those
available to its parents. All
methods are virtual, so the most
recent definition of a method is
always used.

564CS 538 Spring 2008©

class C:
 def DoIt(self):
 self.PrintIt()
 def PrintIt(self):
 print "C rules!"

class D(C):
 def PrintIt(self):
 print "D rules!"
 def TestIt(self):
 self.DoIt()

 dvar = D()
 dvar.TestIt()

D rules!

565CS 538 Spring 2008©

If you specify more than one
parent for a class, lookup is
depth-first, left to right, in the list
of parents provided. For example,
given
class A(B,C): ...

we first look for a non-local
definition in B (and its parents),
then in C (and its parents).

566CS 538 Spring 2008©

Operator Overloading
You can overload definitions of all
of Python’s operators to apply to
newly defined classes. Each
operator has a corresponding
method name assigned to it. For
example, + uses __add__, - uses
__sub__, etc.

567CS 538 Spring 2008©

Given
class Triple:
 def __init__(self,A=0,B=0,C=0):
 self.a=A
 self.b=B
 self.c=C
 def __str__(self):
 return "(%d,%d,%d)"%
 (self.a,self.b,self.c)
 def __add__(self,other):

return Triple(self.a+other.a,
self.b+other.b,

 self.c+other.c)

the following code
t1=Triple(1,2,3)

t2=Triple(4,5,6)

print t1+t2

produces
(5,7,9)

568CS 538 Spring 2008©

Exceptions
Python provides an exception
mechanism that’s quite similar to
the one used by Java.
You “throw” an exception by using
a raise statement:
raise exceptionValue

There are numerous predefined
exceptions, including
OverflowError (arithmetic
overflow), EOFError (when end-
of-file is hit), NameError (when an
undeclared identifier is
referenced), etc.

569CS 538 Spring 2008©

You may define your own
exceptions as subclasses of the
predefined class Exception:
class badValue(Exception):

 def __init__(self,val):

 self.value=val

You catch exceptions in Python’s
version of a try statement:
try:

 statement(s)

except exceptionName1, id1:

 statement(s)

...

except exceptionNamen, idn:

 statement(s)

As was the case in Java, an
exception raised within the try
body is handled by an except
clause if the raised exception
matches the class named in the

570CS 538 Spring 2008©

except clause. If the raised
exception is not matched by any
except clause, the next enclosing
try is considered, or the
exception is reraised at the point
of call.
For example, using our badValue
exception class,
 def sqrt(val):
 if val < 0.0:
 raise badValue(val)
 else:
 return cmath.sqrt(val)

try:
 print "Ans =",sqrt(-123.0)
except badValue,b:
 print "Can’t take sqrt of",

b.value

When executed, we get
Ans = Can’t take sqrt of -123.0

571CS 538 Spring 2008©

Modules
Python contains a module feature
that allows you to access Python
code stored in files or libraries. If
you have a source file mydefs.py
the command
 import mydefs

will read in all the definitions
stored in the file. What’s read in
can be seen by executing
dir(mydefs)

To access an imported definition,
you qualify it with the name of
the module. For example,
mydefs.fct

accesses fct which is defined in
module mydefs.

572CS 538 Spring 2008©

To avoid explicit qualification you
can use the command
from modulename import id1, id2,
...

This makes id1, id2, ... available
without qualification. For
example,
>>> from test import sqrt

>>> sqrt(123)
(11.0905365064+0j)

You can use the command
from modulename import *

to import (without qualification)
all the definitions in modulename.

573CS 538 Spring 2008©

The Python Library
One of the great strengths of
Python is that it contains a vast
number of modules (at least
several hundred) known
collectively as the Python Library.
What makes Python really useful
is the range of prewritten
modules you can access. Included
are network access modules,
multimedia utilities, data base
access, and much more.
See
www.python.org/doc/lib

for an up-to-date listing of what’s
available.

