
556CS 538 Spring 2008©

Classes in Python
Python contains a class creation
mechanism that’s fairly similar to
what’s found in C++ or Java.
There are significant differences
though:
• All class members are public.

• Instance fields aren’t declared.
Rather, you just create fields as
needed by assignment (often in
constructors).

• There are class fields (shared by all
class instances), but there are no
class methods. That is, all methods
are instance methods.

557CS 538 Spring 2008©

• All instance methods (including
constructors) must explicitly
provide an initial parameter that
represents the object instance. This
parameter is typically called self.
It’s roughly the equivalent of this
in C++ or Java.

558CS 538 Spring 2008©

Defining Classes
You define a class by executing a
class definition of the form
class name:

 statement(s)

A class definition creates a class
object from which class instances
may be created (just like in Java).
The statements within a class
definition may be data members
(to be shared among all class
instances) as well as function
definitions (prefixed by a def
command). Each function must
take (at least) an initial parameter
that represents the class instance
within which the function
(instance method) will operate.
For example,

559CS 538 Spring 2008©

class Example:
 cnt=1
 def msg(self):
 print "Bo"+"o"*Example.cnt+

"!"*self.n

>>> Example.cnt
1

>>> Example.msg
<unbound method Example.msg>

Example.msg is unbound because
we haven’t created any instances
of the Example class yet.
We create class instances by using
the class name as a function:
>>> e=Example()

>>> e.msg()
AttributeError: n

560CS 538 Spring 2008©

We get the AttributeError
message regarding n because we
haven’t defined n yet! One way to
do this is to just assign to it,
using the usual field notation:
>>> e.n=1

>>> e.msg()
Boo!

>>> e.n=2;Example.cnt=2

>>> e.msg()
Booo!!

We can also call an instance
method by making the class
object an explicit parameter:
>>> Example.msg(e)
Booo!!

It’s nice to have data members
initialized when an object is
created. This is usually done with
a constructor, and Python allows
this too.

561CS 538 Spring 2008©

A special method named
__init__ is called whenever an
object is created. This method
takes self as its first parameter;
other parameters (possibly made
optional) are allowed.
We can therefore extend our
Example class with a constructor:
class Example:
 cnt=1
 def __init__(self,nval=1):
 self.n=nval
 def msg(self):
 print "Bo"+"o"*Example.cnt+
 "!"*self.n

>>> e=Example()

>>> e.n
1

>>> f=Example(2)

>>> f.n
2

562CS 538 Spring 2008©

You can also define the equivalent
of Java’s toString method by
defining a member function
named __str__(self).
For example, if we add
def __str__(self):

 return "<%d>"%self.n

to Example,
then we can include Example
objects in print statements:
>>> e=Example(2)

>>> print e
<2>

563CS 538 Spring 2008©

Inheritance
Like any language that supports
classes, Python allows inheritance
from a parent (or base) class. In
fact, Python allows multiple
inheritance in which a class
inherits definitions from more
than one parent.
When defining a class you specify
parents classes as follows:
class name(parent classes):

 statement(s)

The subclass has access to its
own definitions as well as those
available to its parents. All
methods are virtual, so the most
recent definition of a method is
always used.

564CS 538 Spring 2008©

class C:
 def DoIt(self):
 self.PrintIt()
 def PrintIt(self):
 print "C rules!"

class D(C):
 def PrintIt(self):
 print "D rules!"
 def TestIt(self):
 self.DoIt()

 dvar = D()
 dvar.TestIt()

D rules!

565CS 538 Spring 2008©

If you specify more than one
parent for a class, lookup is
depth-first, left to right, in the list
of parents provided. For example,
given
class A(B,C): ...

we first look for a non-local
definition in B (and its parents),
then in C (and its parents).

566CS 538 Spring 2008©

Operator Overloading
You can overload definitions of all
of Python’s operators to apply to
newly defined classes. Each
operator has a corresponding
method name assigned to it. For
example, + uses __add__, - uses
__sub__, etc.

567CS 538 Spring 2008©

Given
class Triple:
 def __init__(self,A=0,B=0,C=0):
 self.a=A
 self.b=B
 self.c=C
 def __str__(self):
 return "(%d,%d,%d)"%
 (self.a,self.b,self.c)
 def __add__(self,other):

return Triple(self.a+other.a,
self.b+other.b,

 self.c+other.c)

the following code
t1=Triple(1,2,3)

t2=Triple(4,5,6)

print t1+t2

produces
(5,7,9)

568CS 538 Spring 2008©

Exceptions
Python provides an exception
mechanism that’s quite similar to
the one used by Java.
You “throw” an exception by using
a raise statement:
raise exceptionValue

There are numerous predefined
exceptions, including
OverflowError (arithmetic
overflow), EOFError (when end-
of-file is hit), NameError (when an
undeclared identifier is
referenced), etc.

569CS 538 Spring 2008©

You may define your own
exceptions as subclasses of the
predefined class Exception:
class badValue(Exception):

 def __init__(self,val):

 self.value=val

You catch exceptions in Python’s
version of a try statement:
try:

 statement(s)

except exceptionName1, id1:

 statement(s)

...

except exceptionNamen, idn:

 statement(s)

As was the case in Java, an
exception raised within the try
body is handled by an except
clause if the raised exception
matches the class named in the

570CS 538 Spring 2008©

except clause. If the raised
exception is not matched by any
except clause, the next enclosing
try is considered, or the
exception is reraised at the point
of call.
For example, using our badValue
exception class,
 def sqrt(val):
 if val < 0.0:
 raise badValue(val)
 else:
 return cmath.sqrt(val)

try:
 print "Ans =",sqrt(-123.0)
except badValue,b:
 print "Can’t take sqrt of",

b.value

When executed, we get
Ans = Can’t take sqrt of -123.0

571CS 538 Spring 2008©

Modules
Python contains a module feature
that allows you to access Python
code stored in files or libraries. If
you have a source file mydefs.py
the command
 import mydefs

will read in all the definitions
stored in the file. What’s read in
can be seen by executing
dir(mydefs)

To access an imported definition,
you qualify it with the name of
the module. For example,
mydefs.fct

accesses fct which is defined in
module mydefs.

572CS 538 Spring 2008©

To avoid explicit qualification you
can use the command
from modulename import id1, id2,
...

This makes id1, id2, ... available
without qualification. For
example,
>>> from test import sqrt

>>> sqrt(123)
(11.0905365064+0j)

You can use the command
from modulename import *

to import (without qualification)
all the definitions in modulename.

573CS 538 Spring 2008©

The Python Library
One of the great strengths of
Python is that it contains a vast
number of modules (at least
several hundred) known
collectively as the Python Library.
What makes Python really useful
is the range of prewritten
modules you can access. Included
are network access modules,
multimedia utilities, data base
access, and much more.
See
www.python.org/doc/lib

for an up-to-date listing of what’s
available.

574CS 538 Spring 2008©

Java 1.5/1.6 (Tiger Java)
Java has been extended to include
a variety of improvements, many
drawn from functional languages.
Added features include:
• Parametric polymorphism.

Classes and interfaces may be
parameterized using a type
parameter.
class List<T> {

 T head;

 List<T> tail;

}

Interfaces may also be
parameterized.

• Enhanced loop iterators.
for (v : myArray) {

// each element of myArray
 // appears as a value of v }

575CS 538 Spring 2008©

• Automatic boxing and unboxing of
wrapper classes.

Conversion from int to Integer
or Integer to int is now
automatic.

• Typesafe enumerations.
public enum Color {RED, BLUE, GREEN};

• Static imports.
 You may import all static
members of a class and use them
without qualification. Thus you
may now write out.println
rather than
System.out.println.

• Variable argument methods.

• Formatted output using printf:
out.printf("Ans = %3d",a+b);

576CS 538 Spring 2008©

Reading Assignment
• Pizza Tutorial

(linked from class web page)

577CS 538 Spring 2008©

C#
C# is Microsoft’s answer to Java.
In most ways it is very similar to
Java, with some C++ concepts
reintroduced and some useful
new features.
Similarities to Java include:
• C# is object-based, with all

objected descended from class
Object.

• Objects are created from classes
using new. All objects are heap-
allocated and garbage collection is
provided.

• All code is placed within methods
which must be defined within
classes.

• Almost all Java reserved words
have C# equivalents (many are
identical).

578CS 538 Spring 2008©

• Classes have single inheritance.

• C# generates code for a virtual
machine to support cross-platform
execution.

• Interfaces are provided to capture
functionality common to many
classes.

• Exceptions are very similar in form
to Java’s.

• Instance and static data within an
object must be initialized at point
of creation.

579CS 538 Spring 2008©

C# Improves Upon Some Java
Features

• Operators as well as methods can
be overloaded:
class Point {

 int x, y;
 static Point operator + (
 Point p1, Point p2) {
 return new Point(p1.x+p2.x,

p1.y+p2.y);
 }
 }

• Switch statements may be indexed
by string literals.

• In a switch, fall-throughs to the
next case are disallowed (if non-
empty).

• Goto’s are allowed.

• Virtual methods must be marked.

580CS 538 Spring 2008©

• Persistent objects (that may be
stored across executions) are
available.

581CS 538 Spring 2008©

C# Adds Useful Features
• Events and delegates are included

to handle asynchronous actions
(like keyboard or mouse actions).

• Properties allow user-defined read
and write actions for fields. You can
add get and set methods to the
definition of a field. For example,
class Customer {

 private string name;

 public string Name {

 get { return name; }}

}

Customer c; ...

string s = c.Name;

582CS 538 Spring 2008©

• Indexers allow objects other than
arrays to be indexed. The []
operator is overloadable. This
allows you to define the meaning
of
obj[123] or obj["abc"]
within any class definition.

• Collection classes may be directly
enumerated:
foreach (int i in array) ...

• Fields, methods and constructors
may be defined within a struct as
well as a class. Structs are allocated
within the stack instead of the
heap, and are passed by value. For
example:

struct Point {

 int x,y;

 void reset () {

 x=0; y=0; }

 }

583CS 538 Spring 2008©

• When an object is needed, a
primitive (int, char, etc.) or a
struct will be automatically boxed
or unboxed without explicit use of
a wrapper class (like Integer or
Character). Thus if method
List.add expects an object, you
may write
List.add(123);

and 123 will be boxed into an
Integer object automatically.

• Enumerations are provided:
enum Color {Red, Blue, Green};

• Rectangular arrays are provided:
int [,] multi = new int[5,5];

• Reference, out and variable-length
parameter lists are allowed.

• Pointers may be used in methods
marked unsafe.

